From 14b59a5314915bcff703ca2e63925d5071410328 Mon Sep 17 00:00:00 2001 From: Henrik Andersson Date: Tue, 27 Jun 2023 14:31:19 +0000 Subject: [PATCH] is_selected is not an argument --- tsod/active_learning/plotting.py | 132 ++++++++++++++++++++++--------- 1 file changed, 95 insertions(+), 37 deletions(-) diff --git a/tsod/active_learning/plotting.py b/tsod/active_learning/plotting.py index 4b25d21..ae0d360 100644 --- a/tsod/active_learning/plotting.py +++ b/tsod/active_learning/plotting.py @@ -18,7 +18,13 @@ "test_outlier": "#fd7c99", "test_normal": "#0fefc7", } -MARKER_SIZES = {"selected": 10, "outlier": 12, "normal": 12, "test_outlier": 12, "test_normal": 12} +MARKER_SIZES = { + "selected": 10, + "outlier": 12, + "normal": 12, + "test_outlier": 12, + "test_normal": 12, +} MARKER_VALUES = { "selected": "S", "outlier": "O", @@ -46,22 +52,28 @@ def cachable_get_outlier_counts( ) -> pd.DataFrame: with st.spinner("Creating new distribution plot..."): state = get_as(dataset_name, series) - dataset: pd.DataFrame = st.session_state["inference_results"][dataset_name][series] + dataset: pd.DataFrame = st.session_state["inference_results"][dataset_name][ + series + ] dataset["outlier_group"] = range(len(dataset)) - dataset["outlier_group"] = (dataset["outlier_group"] // number_of_datapoints).astype( - np.int16 - ) + dataset["outlier_group"] = ( + dataset["outlier_group"] // number_of_datapoints + ).astype(np.int16) threshold_timestamps = ( dataset.reset_index().groupby("outlier_group")["index"].first().to_list() ) threshold_timestamps.append(dataset.index.max()) - ranges = [f"{i} - {j}" for i, j in zip(threshold_timestamps, threshold_timestamps[1:])] + ranges = [ + f"{i} - {j}" for i, j in zip(threshold_timestamps, threshold_timestamps[1:]) + ] out_columns = copy.deepcopy(model_names) for m in model_names: - out_columns.extend([f"{m} Missed Train Outliers", f"{m} Missed Test Outliers"]) + out_columns.extend( + [f"{m} Missed Train Outliers", f"{m} Missed Test Outliers"] + ) out_columns.extend(["Marked Train Outliers", "Marked Test Outliers"]) df_out = pd.DataFrame(index=ranges, columns=out_columns) @@ -69,10 +81,14 @@ def cachable_get_outlier_counts( annotated_test_outliers = state.df_test_outlier for group_index, (_, group) in enumerate(dataset.groupby("outlier_group")): outliers_in_this_group = annotated_outliers[ - annotated_outliers.index.to_series().between(group.index[0], group.index[-1]) + annotated_outliers.index.to_series().between( + group.index[0], group.index[-1] + ) ] test_outliers_in_this_group = annotated_test_outliers[ - annotated_test_outliers.index.to_series().between(group.index[0], group.index[-1]) + annotated_test_outliers.index.to_series().between( + group.index[0], group.index[-1] + ) ] df_out.iat[group_index, -2] = len(outliers_in_this_group) df_out.iat[group_index, -1] = len(test_outliers_in_this_group) @@ -80,10 +96,14 @@ def cachable_get_outlier_counts( for model_index, model in enumerate(model_names): model_pred_outliers = group[group[model] == 1].index df_out.iat[group_index, model_index] = len(model_pred_outliers) - df_out.at[ranges[group_index], f"{model} Missed Train Outliers"] = np.count_nonzero( + df_out.at[ + ranges[group_index], f"{model} Missed Train Outliers" + ] = np.count_nonzero( outliers_in_this_group.index.isin(model_pred_outliers) == False ) - df_out.at[ranges[group_index], f"{model} Missed Test Outliers"] = np.count_nonzero( + df_out.at[ + ranges[group_index], f"{model} Missed Test Outliers" + ] = np.count_nonzero( test_outliers_in_this_group.index.isin(model_pred_outliers) == False ) @@ -122,7 +142,9 @@ def make_outlier_distribution_plot(dataset_name: str, series: str): name="Time Range", name_location="middle", name_gap=30, - axistick_opts=opts.AxisTickOpts(is_inside=True, is_align_with_label=True), + axistick_opts=opts.AxisTickOpts( + is_inside=True, is_align_with_label=True + ), ), yaxis_opts=opts.AxisOpts( type_="value", @@ -163,7 +185,9 @@ def make_outlier_distribution_plot(dataset_name: str, series: str): category_gap="40%", ) - colors = [st.session_state[f"color_{m}_{dataset_name}_{series}"] for m in model_names] + colors = [ + st.session_state[f"color_{m}_{dataset_name}_{series}"] for m in model_names + ] if state.outlier: colors.append("#e60b0b") if state.test_outlier: @@ -179,7 +203,9 @@ def make_outlier_distribution_plot(dataset_name: str, series: str): if st.session_state.get(f"highlight_train_{dataset_name}_{series}"): df_missed = df_counts[df_counts[f"{m} Missed Train Outliers"] > 0] if not df_missed.empty: - effect_scatter = (EffectScatter().add_xaxis(df_missed.index.tolist())).add_yaxis( + effect_scatter = ( + EffectScatter().add_xaxis(df_missed.index.tolist()) + ).add_yaxis( f"{m} Missed Training Outliers", df_missed[m].tolist(), label_opts=opts.LabelOpts(is_show=False), @@ -191,7 +217,9 @@ def make_outlier_distribution_plot(dataset_name: str, series: str): if st.session_state.get(f"highlight_test_{dataset_name}_{series}"): df_missed = df_counts[df_counts[f"{m} Missed Test Outliers"] > 0] if not df_missed.empty: - effect_scatter = (EffectScatter().add_xaxis(df_missed.index.tolist())).add_yaxis( + effect_scatter = ( + EffectScatter().add_xaxis(df_missed.index.tolist()) + ).add_yaxis( f"{m} Missed Test Outliers", df_missed[m].tolist(), label_opts=opts.LabelOpts(is_show=False), @@ -220,7 +248,10 @@ def _get_start_and_end_date(clicked_range: str): start_str, end_str = clicked_range.split(" - ") start_time = datetime.datetime.strptime(start_str, "%Y-%m-%d %H:%M:%S") end_time = datetime.datetime.strptime(end_str, "%Y-%m-%d %H:%M:%S") - st.session_state[f"last_clicked_range_{dataset_name}_{series}"] = start_time, end_time + st.session_state[f"last_clicked_range_{dataset_name}_{series}"] = ( + start_time, + end_time, + ) # st.session_state[f"range_str_{dataset_name}"] = clicked_range return start_time, end_time @@ -265,7 +296,9 @@ def make_annotation_suggestion_plot( name_location="middle", name_gap=-20, ), - datazoom_opts=opts.DataZoomOpts(type_="inside", range_start=0, range_end=100), + datazoom_opts=opts.DataZoomOpts( + type_="inside", range_start=0, range_end=100 + ), legend_opts=opts.LegendOpts(pos_top=40, pos_right=10, orient="vertical"), tooltip_opts=opts.TooltipOpts(axis_pointer_type="line", trigger="axis"), ) @@ -280,7 +313,7 @@ def make_annotation_suggestion_plot( label_opts=opts.LabelOpts(is_show=False), symbol_size=3, itemstyle_opts=opts.ItemStyleOpts(color="#dce4e3"), - is_selected=len(x_data) < 10000, + # is_selected=len(x_data) < 10000, tooltip_opts=opts.TooltipOpts(is_show=False), ) ) @@ -317,7 +350,9 @@ def get_echarts_plot_time_range( x_data = state.df_plot.index.to_list() y_data = state.df_plot[data_column].to_list() plot = ( - Line(init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(animation=False))) + Line( + init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(animation=False)) + ) .add_xaxis(x_data) .add_yaxis( data_column, @@ -380,7 +415,7 @@ def get_echarts_plot_time_range( label_opts=opts.LabelOpts(is_show=False), symbol_size=3, itemstyle_opts=opts.ItemStyleOpts(color="#dce4e3"), - is_selected=len(x_data) < 10000, + # is_selected=len(x_data) < 10000, tooltip_opts=opts.TooltipOpts(is_show=False), ) ) @@ -410,7 +445,9 @@ def get_echarts_plot_time_range( symbol="roundRect", symbol_size=15, # color="#dce4e3", - itemstyle_opts=opts.ItemStyleOpts(opacity=1, color=ANNOTATION_COLORS[series_name]), + itemstyle_opts=opts.ItemStyleOpts( + opacity=1, color=ANNOTATION_COLORS[series_name] + ), tooltip_opts=opts.TooltipOpts(is_show=False), ) ) @@ -451,13 +488,18 @@ def make_time_range_outlier_plot(dataset_name: str, series: str, start_time, end symbol="pin", symbol_size=40, itemstyle_opts=opts.ItemStyleOpts( - opacity=1, color=st.session_state[f"color_{model_name}_{dataset_name}_{series}"] + opacity=1, + color=st.session_state[ + f"color_{model_name}_{dataset_name}_{series}" + ], ), tooltip_opts=opts.TooltipOpts(formatter="{a}
Outlier predicted"), ) ) - st.session_state["pred_outlier_tracker"][dataset_name][series] = pred_outlier_tracker + st.session_state["pred_outlier_tracker"][dataset_name][ + series + ] = pred_outlier_tracker clicked_point = st_pyecharts( plot, @@ -485,12 +527,18 @@ def feature_importance_plot(base_obj=None): df_new: pd.DataFrame = st.session_state[f"current_importances_{dataset}_{series}"] if f"previous_importances_{dataset}_{series}" in st.session_state: - df_old: pd.DataFrame = st.session_state[f"previous_importances_{dataset}_{series}"] - df_plot = df_new.merge(df_old, how="left", on="Feature", suffixes=("", " before")) + df_old: pd.DataFrame = st.session_state[ + f"previous_importances_{dataset}_{series}" + ] + df_plot = df_new.merge( + df_old, how="left", on="Feature", suffixes=("", " before") + ) df_plot["diff"] = ( df_plot["Feature importance"] - df_plot["Feature importance before"] ).round(3) - df_plot["diff_text"] = df_plot["diff"].apply(lambda x: str(x) if x <= 0 else f"+{x}") + df_plot["diff_text"] = df_plot["diff"].apply( + lambda x: str(x) if x <= 0 else f"+{x}" + ) else: df_plot = df_new @@ -549,15 +597,21 @@ def make_removed_outliers_example_plots(df_before: pd.DataFrame, df_new: pd.Data number_outlier = outlier_mask.sum() number_to_show = min(number_outlier, 3) changes_sample = ( - df_before[df_before[f"{s}_{model}"] == 1].sample(number_to_show, random_state=1).index + df_before[df_before[f"{s}_{model}"] == 1] + .sample(number_to_show, random_state=1) + .index ) st.subheader(s) cols = st.columns(3) cols[0].metric("Number of predicted outliers in this series", number_outlier) - cols[1].metric("Number of non-NaN entries before", len(df_before[~df_before[s].isna()])) - cols[2].metric("Number of non-NaN entries after", len(df_new[~df_new[s].isna()])) + cols[1].metric( + "Number of non-NaN entries before", len(df_before[~df_before[s].isna()]) + ) + cols[2].metric( + "Number of non-NaN entries after", len(df_new[~df_new[s].isna()]) + ) if not number_outlier: continue @@ -568,12 +622,12 @@ def make_removed_outliers_example_plots(df_before: pd.DataFrame, df_new: pd.Data end_idx = min(len(df_before) - 1, int_idx + 20) start_time = df_before.index[start_idx] end_time = df_before.index[end_idx] - df_plot_before = df_before[df_before.index.to_series().between(start_time, end_time)][ - [s] - ].dropna() - df_plot_new = df_new[df_new.index.to_series().between(start_time, end_time)][ - [s] - ].dropna() + df_plot_before = df_before[ + df_before.index.to_series().between(start_time, end_time) + ][[s]].dropna() + df_plot_new = df_new[ + df_new.index.to_series().between(start_time, end_time) + ][[s]].dropna() plot = ( Line() @@ -615,8 +669,12 @@ def make_removed_outliers_example_plots(df_before: pd.DataFrame, df_new: pd.Data name_location="middle", name_gap=-20, ), - datazoom_opts=opts.DataZoomOpts(type_="inside", range_start=30, range_end=70), - legend_opts=opts.LegendOpts(pos_top=40, pos_right=10, orient="vertical"), + datazoom_opts=opts.DataZoomOpts( + type_="inside", range_start=30, range_end=70 + ), + legend_opts=opts.LegendOpts( + pos_top=40, pos_right=10, orient="vertical" + ), tooltip_opts=opts.TooltipOpts(axis_pointer_type="line", trigger="axis"), )