-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization_util.py
283 lines (210 loc) · 10.4 KB
/
visualization_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import re
import shutil
from collections import defaultdict
from os import makedirs
import imageio
import matplotlib
import matplotlib.pyplot as plt
import tikzplotlib
import numpy as np
from dim_reduction import reduce_dimensions
from util import map_hidden_states_to_automaton, reduce_dim_of_state_hidden_state_map, map_hidden_states_to_clusters, \
extract_hidden_states, map_tc_to_states_and_hs
def visualize_test_cases(test_cases, tc_hs_map, save_to_path=None, fig_name=None):
if save_to_path:
matplotlib.use('Agg')
fig = plt.figure()
ax = fig.add_subplot()
ax.set_xlabel('X', fontsize=12)
ax.set_ylabel('Y', fontsize=12)
if fig_name:
ax.set_title(fig_name)
state_points_map = defaultdict(list)
for tc in test_cases:
assert tc in tc_hs_map.keys()
states, points = tc_hs_map[tc]
for s, p in zip(states, points):
state_points_map[s].append(p)
for state, points in state_points_map.items():
x, y = [i[0] for i in points], [i[1] for i in points]
ax.scatter(x, y, label=state)
for tc in test_cases:
if len(tc) == 1:
continue
cor = tc_hs_map[tc][1]
x, y = [i[0] for i in cor], [i[1] for i in cor]
for i in range(0, len(x) - 1, 1):
ax.arrow(x[i], y[i], x[i + 1] - x[i], y[i + 1] - y[i],
width=0.02, head_width=0.2, length_includes_head=True, overhang=1., )
ax.legend()
if not save_to_path:
plt.show()
else:
makedirs(f'rnn_data/figures/{save_to_path}.png', exist_ok=True)
plt.savefig(f'rnn_data/figures/{save_to_path}.png', format='png')
plt.close('all')
def visualize_state_hs_map(data, save_to_path=None, fig_name='', save_tikz=False):
if save_to_path:
matplotlib.use('Agg')
dims = len(list(data.values())[0][0])
assert dims == 2 or dims == 3
fig = plt.figure()
if dims == 2:
ax = fig.add_subplot()
else:
ax = fig.add_subplot(projection='3d')
ax.set_zlabel('Z', fontsize=12)
ax.set_xlabel('First LDA Component', fontsize=12)
ax.set_ylabel('Second LDA Component', fontsize=12)
if fig_name:
ax.set_title(fig_name)
for state_id, points in data.items():
# if state_id == 'sink':
# continue
coordinates = [[] for _ in range(dims)]
for p in points:
for i in range(dims):
coordinates[i].append(p[i])
ax.scatter(*coordinates, label=state_id)
ax.legend()
fig.tight_layout()
if not save_to_path:
plt.show()
else:
# makedirs(f'rnn_data/figures/{save_to_path}.png', exist_ok=True)
makedirs(f'rnn_data/figures/', exist_ok=True)
plt.savefig(f'rnn_data/figures/{save_to_path}.png', format='png', )
if save_tikz:
tikzplotlib.save(f'rnn_data/figures/{save_to_path}.tex')
plt.close('all')
def visualize_hidden_states(nn_model, automaton, data, dim_red_fun, process_hs_fun='copy', map_hidden_to='state',
save_path=None, fig_name=None):
assert map_hidden_to in {'state', 'state_input', 'input_new_state'}
hss = map_hidden_states_to_automaton(nn_model, automaton, data, process_hs_fun=process_hs_fun,
map_hidden_to=map_hidden_to, save=False, load=False)
hss = reduce_dim_of_state_hidden_state_map(hss, dim_red_fun, dims=2, )
visualize_state_hs_map(hss, save_path, fig_name)
def visualize_lda(nn_model, automaton, data, use_pca=False, process_hs_fun='copy', save_path=None, fig_name=None,
use_tikz=False):
from clustering import compute_linear_separability_classifier
hss = extract_hidden_states(nn_model, data, process_hs_fun, load=False, save=False)
reduced_dim_pca = None
if use_pca:
reduced_dim_pca = reduce_dimensions(hss, 'pca', target_dimensions=2, )
lda = compute_linear_separability_classifier(automaton, hss, data, reduce_dims=True)
state_lda_map = defaultdict(list)
hs_list = hss.copy()
for i in range(len(hss)):
hs = hs_list.pop(0)
hs = np.array(hs)
hs = hs.reshape(1, -1)
state = lda.predict(hs)[0]
coordinates = lda.transform(hs)[0] if not use_pca else reduced_dim_pca[i]
state_lda_map[state].append(coordinates)
visualize_state_hs_map(state_lda_map, save_path, fig_name, use_tikz)
def visualize_clusters(nn_model, data, clustering_fun, process_hs_fun='flatten', dim_reduction_fun='pca'):
cluster_hs_map = map_hidden_states_to_clusters(nn_model, data, clustering_fun, dim_reduction_fun, process_hs_fun)
visualize_state_hs_map(cluster_hs_map)
def visualize_hs_over_training(opt, automaton, train_val_data, data, epochs, save_intervals, exp_name,
dim_red_method='pca', train=True,
delete_aux_files=True):
if train:
opt.train(train_val_data[0], train_val_data[1], n_epochs=epochs, exp_name=exp_name, early_stop=False,
save_location='rnn_data/models/', save_interval=save_intervals, load=False)
tmp_dir = 'tmpVisualizationHelper'
os.makedirs(f'rnn_data/figures/{tmp_dir}', exist_ok=True)
for i in range(save_intervals, epochs, save_intervals):
weights_name = f'rnn_data/models/{opt.model.get_model_name()}_epoch_{i}'
load_status = opt.load(weights_name)
assert load_status
if dim_red_method == 'pca':
hs_processing_fun = 'flatten' if opt.model.model_type != 'lstm' else 'flatten_lstm'
visualize_hidden_states(nn_model=opt.model, automaton=automaton, data=data,
dim_red_fun='pca', process_hs_fun=hs_processing_fun,
save_path=f'{tmp_dir}/{exp_name}_{opt.model.model_type}_{i}',
fig_name=f'{exp_name}_{dim_red_method}_{opt.model.model_type}_{i}')
else:
visualize_lda(opt.model, automaton, data, process_hs_fun=hs_processing_fun,
save_path=f'{tmp_dir}/{exp_name}_{opt.model.model_type}_{i}',
fig_name=f'{exp_name}_{dim_red_method}_{opt.model.model_type}_{i}')
if delete_aux_files:
os.remove(weights_name)
# sort images according to epoch
images = os.listdir(f'rnn_data/figures/{tmp_dir}')
sorted_images = []
for i in images:
image_num = int(re.search(f'{exp_name}_{opt.model.model_type}_(.*).png', i).group(1))
sorted_images.append((image_num, i))
sorted_images.sort(key=lambda x: x[0])
images = [i[1] for i in sorted_images]
gif_images = []
for filename in images:
gif_images.append(imageio.imread(f'rnn_data/figures/{tmp_dir}/{filename}'))
imageio.mimsave(f'training_process_gifs/{exp_name}_{opt.model.model_type}.gif', gif_images, duration=0.15)
print(f'Hidden states of the training process saved to training_process_gifs/{exp_name}_{opt.model.model_type}.gif')
if delete_aux_files:
shutil.rmtree(f'rnn_data/figures/{tmp_dir}')
def visualize_test_cases_over_time(test_cases, nn_model, automaton, data):
hs = extract_hidden_states(nn_model, data)
hs = reduce_dimensions(hs, 'pca', target_dimensions=2)
tc_hs_map = map_tc_to_states_and_hs(data, hs, automaton)
visualize_test_cases(test_cases, tc_hs_map)
def visualize_constructed_rnn_noise_and_retrained():
from automata_data_generation import get_tomita
from automata_data_generation import generate_data_from_automaton
from torch import optim
from RNN import Optimization
from Aut2RNNOneLayer import Dfa2RnnTransformer1Layer
from methods import conformance_test
from automata_data_generation import AutomatonDataset
from clustering_comparison import compare_clustering_methods
automaton = get_tomita(5)
visualization_method = 'lda'
save_path = 'paper_tomita5'
save_to_tikz = False
num_training_samples = 50 * 1000
num_val_samples = 2 * 1000
saturation_hidden, saturation_output, noise = 3, 3, 0.2
transformer = Dfa2RnnTransformer1Layer(automaton, saturation_hidden, saturation_output, 0, device=None)
no_noise_rnn = transformer.transform()
no_noise_rnn.model_name = 'no_noise'
transformer = Dfa2RnnTransformer1Layer(automaton, saturation_hidden, saturation_output, noise, device=None)
rnn = transformer.transform()
rnn.model_name = f'visualization_of_computed'
training_data, input_al, output_al = generate_data_from_automaton(automaton, num_training_samples)
validation_data, _, _ = generate_data_from_automaton(automaton, num_val_samples)
data_handler = AutomatonDataset(input_al, output_al, batch_size=128, device=None)
train, val = data_handler.create_dataset(training_data), data_handler.create_dataset(validation_data)
optimizer = optim.Adam(rnn.parameters(), lr=0.0005, weight_decay=1e-6)
opt = Optimization(model=rnn, optimizer=optimizer, device=None)
opt.save(f'rnn_data/models/exp_models/{rnn.model_name}')
rnn.eval()
if visualization_method == 'lda':
visualize_lda(no_noise_rnn, automaton, validation_data, process_hs_fun='flatten',
fig_name='Correct-by-construction RNN',
save_path=f'{save_path}_constructed', use_tikz=save_to_tikz)
visualize_lda(rnn, automaton, validation_data, process_hs_fun='flatten',
fig_name='RNN with Gaussian Noise',
save_path=f'{save_path}_noisy', use_tikz=save_to_tikz)
else:
visualize_hidden_states(no_noise_rnn, automaton, validation_data, 'pca')
visualize_hidden_states(rnn, automaton, validation_data, 'pca')
rnn.train()
opt.train(train, val, n_epochs=100, exp_name='visualization_retraining',
verbose=True, early_stop=True, load=False, save=False)
rnn.eval()
if visualization_method == 'lda':
visualize_lda(rnn, automaton, validation_data, process_hs_fun='flatten',
fig_name='Retrained RNN',
save_path=f'{save_path}_retrained',
use_tikz=save_to_tikz)
else:
visualize_hidden_states(rnn, automaton, validation_data, 'pca')
conformance_test(rnn, automaton, min_test_len=6, max_test_len=15)
print('No noise')
compare_clustering_methods(automaton, no_noise_rnn, validation_data)
print('Retrained')
compare_clustering_methods(automaton, rnn, validation_data)
if __name__ == '__main__':
visualize_constructed_rnn_noise_and_retrained()