forked from tli3/TMJOA_Prognosis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStep2_EHMN.r
150 lines (145 loc) · 7.83 KB
/
Step2_EHMN.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#i2=7;optN=18#24
method.list = c("glmnet", "svmLinear", "rf", "xgbTree", "lda2","nnet","glmboost","hdda")
library(caret)
library(glmnet)
library(pROC)
library(Matrix)
library(qqman)
library(MLmetrics)
library(ggplot2) # Data visualization
library(data.table)
library(caret)
library(LiblineaR)
library(xgboost)
library(lightgbm)
library(SHAPforxgboost)
library(MASS)
options(scipen=999)
library(data.table)
if(!require("kernlab"))install.packages("kernlab",repos = "http://cran.us.r-project.org")
library(pls)
library(randomForest)
A=read.csv("TMJOAI_Long_040422_Norm.csv",check.names = FALSE)
y=A[,1]
X=A[,-1]
Nfold=10
N=10
fea=matrix(NA,dim(X)[2],Nfold*N);rownames(fea)=colnames(X)
seed0=2022
set.seed(seed0)
foldsCVT <- createFolds(factor(y)[-(1:40)], k=Nfold, list=TRUE, returnTrain=FALSE)
train.control <- trainControl(method = "cv", number = 10, # k-folds CV with k=10
classProbs = TRUE,
savePredictions = TRUE,
summaryFunction = multiClassSummary)# save predictions for ROC
predYT=matrix(NA,length(y),1)
select=rep(NA,10)
predYT_valid=matrix(NA,length(y),10)
#file0=Sys.glob('out_valid/*')
#file0=union(union(Sys.glob('out_valid/*_lda2*'),Sys.glob('out_valid/*_glmboost*')),Sys.glob('out_valid/*_glmboost*'))
file0=union(union(Sys.glob('out_valid/*_lda2*'),Sys.glob('out_valid/*_glmboost*')),Sys.glob('out_valid/*_hdda*'))
#file0=union(union(union(Sys.glob('out_valid/*_lda2*'),Sys.glob('out_valid/*_glmboost*')),Sys.glob('out_valid/*_hdda*')),Sys.glob('out_valid/*_nnet*'))
L00=length(file0);file0=unlist(lapply(strsplit(file0,'/'),'[',2))
pred00=array(NA,c(length(y),10,L00))
pred01=matrix(NA,length(y),L00)
Shap=matrix(0,length(y),L00);colnames(Shap)= gsub('.txt','',file0)
for(ii in 1:L00){pred00[,,ii]=as.matrix(read.table(paste0('out_valid/',file0[ii])));pred01[,ii]=read.table(paste0('out/',file0[ii]))[[1]]}
for(ii in 1:Nfold)
{
print(Nfold-ii)
indtempT=foldsCVT[[ii]]+40
y0=y[-indtempT]
X0=data.frame(pred00[-indtempT,ii,])
X1=data.frame(pred01[indtempT,])
colnames(X0)=colnames(X1)=gsub('.txt','',file0)
p=dim(X0)[2]
training.set=as.data.frame(cbind(factor(paste0("X",y0)),X0));colnames(training.set)[1]="Y"
test.set=as.data.frame(X1)
#model0 = train(Y~.,data = training.set[-c(1:40),],method = method.list[2],trControl = train.control,verbosity=0)
model0 = train(Y~.,data = training.set[-c(1:40),],method = method.list[2],trControl = train.control,verbosity=0)#AUC
rfImp <- varImp(model0, scale = T);ind00=sort(-as.matrix(round(rfImp[[1]][,1],3)),ind=T)$ix;
tempp=t(t(as.matrix(round(rfImp[[1]],3))[ind00,]));rownames(tempp)=gsub("\\\\","",gsub("`","",rownames(tempp)))
tempp=t(t(tempp[unique(rownames(tempp)),]))
score=tempp[,1];names(score)=gsub("\\\\","",gsub("`","",names(score)))
#optN=which(cumsum(score)/sum(score)>0.5)[1]
if((i2<=5)&(i2!=1)){
model0 = train(Y~.,data = training.set[-c(1:40),c("Y",names(score)[1:optN])],method = method.list[i2],trControl = train.control,verbosity=0)}
if(i2==6){model0 = train(Y~.,data = training.set[-c(1:40),c("Y",names(score)[1:optN])],method = method.list[i2],center = TRUE)}
if(i2>6){model0 = train(Y~.,data = training.set[-c(1:40),c("Y",names(score)[1:optN])],method = method.list[i2],trControl = train.control)}
if(i2!=1){predYT_valid[-c(1:40,indtempT),ii] <- round(as.numeric(predict(model0,training.set[-c(1:40),c("Y",names(score)[1:optN])],type="prob")[,2]),4)
predYT[indtempT]= round(as.numeric(predict(model0,test.set,type="prob")[,2]),4)
for(jjj in 1:optN){
datatemp=test.set;datatemp[,names(score)[jjj]]=0
temp000=as.numeric(predict(model0, datatemp,type="prob")[,2])
temp000=pmin(pmax(temp000,0.001),0.999)
Shap[indtempT,names(score)[jjj]]=log(temp000/(1-temp000))-log(predYT[indtempT]/(1-predYT[indtempT]))}
}
if(i2==1){
cv0=cv.glmnet(as.matrix(training.set[-c(1:40),-1]),training.set[-c(1:40),"Y"],family="binomial",alpha=1)
lamb0=cv0$lambda.min
mod0 <- glmnet(as.matrix(training.set[-c(1:40),-1]),training.set[-c(1:40),"Y"],family="binomial",alpha=1,lambda=lamb0)
temp111=exp(as.numeric(predict(mod0,as.matrix(training.set[-c(1:40),-1]))[,1]))
predYT_valid[-c(1:40,indtempT),ii]=apply(training.set[-c(1:40),-1],1,median)#round(temp111/(1+temp111),4)
temp111=exp(as.numeric(predict(mod0,as.matrix(test.set))[,1]))
predYT[indtempT]=apply(test.set,1,median)#round(temp111/(1+temp111),4)
}
}
summ0<-function(pred,Y){
pred=as.numeric(pred);Y=as.numeric(Y)
if(max(pred)==2)pred=pred-1
if(max(Y)==2)Y=Y-1
acc=sum((pred>0.5)==Y)/length(Y)
prec1=sum((pred>0.5)&(Y==1))/(sum(pred>0.5)+.00001)
prec0=sum((pred<=0.5)&(Y==0))/(sum(pred<=0.5)+.00001)
recall1=sum((pred>0.5)&(Y==1))/(sum(Y==1)+.00001)
recall0=sum((pred<0.5)&(Y==0))/(sum(Y==0)+.00001)
auc0=pROC::roc(Y,pred,smooth=F)
f1score=(1/(1/prec1+1/recall1)+1/(1/prec0+1/recall0))
acc_sd=sqrt(acc*(1-acc)/(length(Y)));prec1_sd=sqrt(prec1*(1-prec1)/(sum(pred>0.5)+.00001))
prec0_sd=sqrt(prec0*(1-prec0)/(sum(pred<=0.5)+.00001))
recall1_sd=sqrt(recall1*(1-recall1)/(sum(Y==1)+.00001))
recall0_sd=sqrt(recall0*(1-recall0)/(sum(Y==0)+.00001));
temp1=as.numeric(ci.auc(Y,pred,method='delong'))
auc_sd=diff(temp1)[1]/1.96
prec10=rnorm(1000,prec1,prec1_sd)
prec00=rnorm(1000,prec0,prec0_sd)
recall10=rnorm(1000,recall1,recall1_sd)
recall00=rnorm(1000,recall0,recall0_sd)
f1score00=(1/(1/prec10+1/recall10)+1/(1/prec00+1/recall00))
statt0=c(acc,acc_sd,prec1,prec1_sd,prec0,prec0_sd,recall1,recall1_sd,recall0,recall0_sd,f1score,sd(f1score00),as.numeric(auc0$auc),auc_sd)
names(statt0)=c('Accuracy','Accuracy_SD','Precision_case','Precision_case_SD','Precision_control','Precision_control_SD','Recall_case','Recall_case_SD',
'Recall_control','Recall_control_SD','F1score','F1score_SD','AUC','AUC_SD')
return(statt0)
}
summ1<-function(pred,Y){indtemp=which(!is.na(pred));return(summ0(pred[indtemp],Y[indtemp]))}
round(summ0(predYT[-c(1:40)],y[-c(1:40)]),4)
round(apply(apply(predYT_valid,2,summ1,Y=y),1,mean),4)
write.table(predYT,file=paste0("final/comb.txt"),quote=F,col.names=F,row.names=F)
write.table(Shap,file=paste0("final/comb_Shap.txt"),quote=F,row.names=F)
#write.table(predYT_valid,file=paste0("final_valid/",method.list[i1],"_",method.list[i2],".txt"),quote=F,col.names=F,row.names=F)
Glmboost combine glmboost + lda2 + hdda optN=18
Accuracy Precision_case Precision_control Recall_case
0.8235294 0.9999991 0.7391301 0.6470584
Recall_control F1score AUC
0.9999994 0.8178566 0.7231834
validation set
Accuracy Precision_case Precision_control Recall_case
0.8694288 0.9529479 0.8152706 0.7774995
Recall_control F1score AUC
0.9612494 0.8676725 0.9488819
Glmboost combine glmboost + lda2 + hdda + glmnet optN=24
Accuracy Precision_case Precision_control Recall_case
0.7647059 0.9090901 0.6956519 0.5882349
Recall_control F1score AUC
0.9411759 0.7571424 0.7128028
Accuracy Precision_case Precision_control Recall_case
0.8727621 0.9612813 0.8164402 0.7774995
Recall_control F1score AUC
0.9679160 0.8709328 0.9493003
Shap=Shap[-c(1:40),];X0=pred01[-c(1:40),]
colnames(X0)=colnames(Shap)=gsub('lda2_','AUC_',colnames(Shap))
Shap[is.na(Shap)]=0;Shap=as.data.frame(Shap);
aa=shap.plot.summary.wrap2(round(Shap,4),X = X0,dilute =1)
pdf(paste0('final/Shap_combmethod.pdf'))
print(aa)
dev.off()