-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdx7_render.py
281 lines (209 loc) · 10.9 KB
/
dx7_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from functools import partial
from pathlib import Path
import timeit
import argparse
import os
import math
import numpy as np
import jax.numpy as jnp
import jax
from jax import random
import flax.linen as nn
from scipy.io import wavfile
import pandas as pd
from tqdm.auto import trange
from dawdreamer.faust.box import boxFromDSP, boxToSource
from dawdreamer.faust import FaustContext
def note_number_to_hz(note_number):
return 440.0 * (2.0 ** ((note_number - 69) / 12.0))
def note_to_tensor(note, gain, note_dur, total_dur):
# Return 2D tensor shaped (3, total_dur) where
# 1st dimension is (freq, gain, gate)
# and 2nd dimension is audio sample
tensor = jnp.zeros((3, total_dur))
# set freq and gain
freq = note_number_to_hz(note)
tensor = tensor.at[:2, :].set(
jnp.array([freq, gain]).reshape(2, 1))
# set gate
tensor = tensor.at[2, :note_dur].set(jnp.array([1]))
return tensor
def transform_k_v(k, v):
if 'Levels/' in k or 'Rates/' in k:
v = jnp.interp(v, jnp.array([0, 99]), jnp.array([-1., 1.]))
elif 'LFO/AMD' in k or 'LFO/PMD' in k or 'LFO/Delay' in k or 'LFO/Speed' in k:
v = jnp.interp(v, jnp.array([0, 99]), jnp.array([-1., 1.]))
elif 'LFO/Pitch Mod Sens' in k:
v = jnp.interp(v, jnp.array([0, 7]), jnp.array([-1., 1.]))
elif 'LFO/Sync' in k:
v = jnp.interp(v, jnp.array([0, 1]), jnp.array([-1., 1.]))
elif 'LFO/Wave' in k:
v = nn.one_hot(v, num_classes=6)
elif 'Feedback' in k:
v = jnp.interp(v, jnp.array([0, 7]), jnp.array([-1., 1.]))
elif 'Osc Key Sync' in k:
v = jnp.interp(v, jnp.array([0, 1]), jnp.array([-1., 1.]))
elif 'Transpose' in k:
v = jnp.interp(v, jnp.array([-24, 24]), jnp.array([-1., 1.]))
# non global / Operator (1-6) parameters
elif 'AmpModSens' in k:
v = jnp.interp(v, jnp.array([0, 3]), jnp.array([-1., 1.]))
elif 'KeyVelSens' in k:
v = jnp.interp(v, jnp.array([0, 7]), jnp.array([-1., 1.]))
elif 'Other/Level' in k:
v = jnp.interp(v, jnp.array([0, 99]), jnp.array([-1., 1.]))
elif 'Other/Freq Mode' in k:
v = jnp.interp(v, jnp.array([0, 1]), jnp.array([-1., 1.]))
elif 'Other/Rate Scale' in k:
v = jnp.interp(v, jnp.array([0, 7]), jnp.array([-1., 1.]))
elif 'Break Point/Break Point' in k or 'Break Point/Left Depth' in k or 'Break Point/Right Depth' in k:
v = jnp.interp(v, jnp.array([0, 99]), jnp.array([-1., 1.]))
elif 'Break Point/Left Curve' in k or 'Break Point/Right Curve' in k:
v = nn.one_hot(v, num_classes=4)
elif 'Tone/Detune' in k:
v = jnp.interp(v, jnp.array([0, 14]), jnp.array([-1., 1.]))
elif 'Tone/Freq Coarse' in k:
v = nn.one_hot(v, num_classes=32)
elif 'Tone/Freq Fine' in k:
v = nn.one_hot(v, num_classes=100)
else:
raise ValueError(f'Unrecognized key {k}')
return v
def dx7_render(patches_df, algorithm: int, batch_size: int, sample_rate: int, note: int, note_dur: float,
record_dur: float, do_normalize: bool, output_directory):
# Note: algorithm is in range [0-31]
# Note: It is possible to render different algorithms within the same batch. It might make sense to do this
# if you only have a few presets to render, and they use different algorithms.
# We assume we'll render a lot of presets, so we compile a different JAX module for each algorithm.
df = patches_df[patches_df["global/algorithm"] == algorithm]
df = df.drop(columns=["filename", "name"])
df = df.drop(columns=["global/algorithm"])
if not df.shape[0]:
return
rename_mapper = {
'global/lfoAMD': '_DX7/Global/LFO/AMD',
'global/lfoDelay': '_DX7/Global/LFO/Delay',
'global/lfoPMD': '_DX7/Global/LFO/PMD',
'global/lfoPitchModSens': '_DX7/Global/LFO/Pitch Mod Sens',
'global/lfoSpeed': '_DX7/Global/LFO/Speed',
'global/lfoSync': '_DX7/Global/LFO/Sync',
'global/lfoWave': '_DX7/Global/LFO/Wave',
'global/algorithm': '_DX7/Global/Main/Algorithm',
'global/feedback': '_DX7/Global/Main/Feedback',
'global/oscKeySync': '_DX7/Global/Main/Osc Key Sync',
'global/transpose': '_DX7/Global/Main/Transpose',
'global/pegL1': '_DX7/Global/Pitch Env Generator Levels/L1',
'global/pegL2': '_DX7/Global/Pitch Env Generator Levels/L2',
'global/pegL3': '_DX7/Global/Pitch Env Generator Levels/L3',
'global/pegL4': '_DX7/Global/Pitch Env Generator Levels/L4',
'global/pegR1': '_DX7/Global/Pitch Env Generator Rates/R1',
'global/pegR2': '_DX7/Global/Pitch Env Generator Rates/R2',
'global/pegR3': '_DX7/Global/Pitch Env Generator Rates/R3',
'global/pegR4': '_DX7/Global/Pitch Env Generator Rates/R4',
}
for i in range(1, 7):
rename_mapper.update(
{
f'op{i}/egL1': f'_DX7/Operator {i}/Amp Env Generator/Levels/L1',
f'op{i}/egL2': f'_DX7/Operator {i}/Amp Env Generator/Levels/L2',
f'op{i}/egL3': f'_DX7/Operator {i}/Amp Env Generator/Levels/L3',
f'op{i}/egL4': f'_DX7/Operator {i}/Amp Env Generator/Levels/L4',
f'op{i}/ampModSens': f'_DX7/Operator {i}/Amp Env Generator/Other/AmpModSens',
f'op{i}/touchSensitivity': f'_DX7/Operator {i}/Amp Env Generator/Other/KeyVelSens',
f'op{i}/totalLev': f'_DX7/Operator {i}/Amp Env Generator/Other/Level',
f'op{i}/freqMode': f'_DX7/Operator {i}/Amp Env Generator/Other/Freq Mode',
f'op{i}/rateScaling': f'_DX7/Operator {i}/Amp Env Generator/Other/Rate Scale',
f'op{i}/egR1': f'_DX7/Operator {i}/Amp Env Generator/Rates/R1',
f'op{i}/egR2': f'_DX7/Operator {i}/Amp Env Generator/Rates/R2',
f'op{i}/egR3': f'_DX7/Operator {i}/Amp Env Generator/Rates/R3',
f'op{i}/egR4': f'_DX7/Operator {i}/Amp Env Generator/Rates/R4',
f'op{i}/breakPoint': f'_DX7/Operator {i}/Break Point/Break Point',
f'op{i}/leftCurve': f'_DX7/Operator {i}/Break Point/Left Curve',
f'op{i}/leftDepth': f'_DX7/Operator {i}/Break Point/Left Depth',
f'op{i}/rightCurve': f'_DX7/Operator {i}/Break Point/Right Curve',
f'op{i}/rightDepth': f'_DX7/Operator {i}/Break Point/Right Depth',
f'op{i}/detune': f'_DX7/Operator {i}/Tone/Detune',
f'op{i}/freqCoarse': f'_DX7/Operator {i}/Tone/Freq Coarse',
f'op{i}/freqFine': f'_DX7/Operator {i}/Tone/Freq Fine',
}
)
df.rename(columns=rename_mapper, inplace=True)
# convert from seconds to samples
record_dur = int(sample_rate*record_dur)
note_dur = int(sample_rate*note_dur)
tensor = note_to_tensor(note, 1, note_dur, record_dur)
tensor = jnp.expand_dims(tensor, axis=0)
tensor = jnp.tile(tensor, (batch_size, 1, 1))
with FaustContext():
dsp_content = f"""
custom_dx7 = library("custom_dx7.lib");
replace = !,_;
process = ["freq":replace, "gain":replace, "gate":replace -> custom_dx7.dx7_algorithm({algorithm+1})] <: _, _;
"""
box = boxFromDSP(dsp_content)
module_name = 'FaustVoice'
jax_code = boxToSource(box, 'jax', module_name, ['-a', 'jax/minimal.py'])
custom_globals = {}
exec(jax_code, custom_globals) # security risk!
MonoVoice = custom_globals[module_name]
# split parameters but don't split RNGs (DX7 doesn't use RNGs anyway).
BatchedVoice = nn.vmap(MonoVoice, in_axes=(0, None), variable_axes={'params': 0}, split_rngs={'params': False})
batched_model = BatchedVoice(sample_rate=sample_rate)
# optional shuffle
df = df.sample(frac=1, ignore_index=True)
# pad df with additional rows to match batch size evenly
assert df.shape[0]
total_presets = df.shape[0]
while df.shape[0] % batch_size != 0:
df = pd.concat([df, df[:batch_size-(total_presets % batch_size)]])
jit_inference_fn = jax.jit(batched_model.apply, static_argnums=[2])
# timeit_number = 3
# key = random.PRNGKey(0)
# key, subkey = random.split(key)
# params = batched_model.init({'params': subkey}, tensor, DURATION)['params']
# result = timeit.timeit("jit_inference_fn({'params': params}, tensor, DURATION)", number=timeit_number,
# globals=locals()) / timeit_number
# print(f"Time it: {result:.3f} seconds average.")
output_directory = Path(output_directory) / f'algo{algorithm+1}'
os.makedirs(output_directory, exist_ok=True)
num_batches = math.ceil(total_presets/batch_size)
count = 0
for batch_i in trange(num_batches, desc="Items Loop"):
params = df[batch_i*batch_size:(batch_i+1)*batch_size].to_dict(orient='list')
params = {k: transform_k_v(k, jnp.array(v)) for k, v in params.items()}
audio = jit_inference_fn({'params': params}, tensor, record_dur)
audio = np.array(audio)
for i in range(batch_size):
if count < total_presets:
output_audio = audio[i].T
if do_normalize:
# normalize peak level
output_audio = output_audio / np.abs(output_audio).max()
output_path = str(output_directory / f"render_{str(count).zfill(5)}.wav")
wavfile.write(output_path, sample_rate, output_audio)
count += 1
def main():
parser = argparse.ArgumentParser(description="Render many presets of a DX7 synthesizer with JAX.")
parser.add_argument("--csv", default="dx7_patches.csv", help="Path to CSV file.")
parser.add_argument("--batch-size", default=32, help="Batch size")
parser.add_argument( "-sr", "--sample-rate", default=44100, help="Sample rate")
parser.add_argument("--note-dur", default=2, help="Note on duration (seconds).")
parser.add_argument("--record-dur", default=3, help="Recording duration (seconds).")
parser.add_argument("--note", default=48, help="MIDI note to play.")
parser.add_argument("--normalize", default=True, action=argparse.BooleanOptionalAction,
help="Toggle for normalizing peak level.")
parser.add_argument('--platform', default='cpu', choices=['cpu', 'gpu'])
parser.add_argument("-o", "--output-directory", default="output_dx7",
help="Output directory for saved files.")
args = parser.parse_args()
# Global flag to set a specific platform, must be used at startup.
jax.config.update('jax_platform_name', args.platform)
patches_csv = args.csv
assert os.path.isfile(patches_csv), FileExistsError(f"CSV of patches not found at path: {patches_csv}")
df = pd.read_csv(patches_csv)
for algorithm in trange(32, desc="Algorithm"):
dx7_render(df, algorithm, args.batch_size, args.sample_rate, args.note, args.note_dur, args.record_dur,
args.normalize, args.output_directory)
print('All done!')
if __name__ == "__main__":
main()