-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathapp.py
49 lines (35 loc) · 1.55 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import Request,FastAPI
from pydantic import BaseModel
import uvicorn
from transformers.pipelines import pipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
app = FastAPI()
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
print ("Device ", torch_device)
torch.set_grad_enabled(False)
tokenizer = AutoTokenizer.from_pretrained("./distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("./distilbart-cnn-12-6").to(torch_device)
model = model.to(torch_device)
class SummaryRequest(BaseModel):
text: str
min_length: int
max_length: int
def get_summary(t,tokenizer_summary,model_summary):
txt = t['text']
minl = t['min_length'] #75
maxl = t['max_length'] #150
inputs = tokenizer_summary([txt], max_length=1024,truncation=True, return_tensors='pt').to(torch_device)
summary_ids = model_summary.generate(inputs['input_ids'], num_beams=3,num_return_sequences=1,no_repeat_ngram_size=2, min_length = minl,max_length=maxl, early_stopping=True)
dec = [tokenizer_summary.decode(ids,skip_special_tokens=True, clean_up_tokenization_spaces=True) for ids in summary_ids]
output = dec[0].strip()
return {'summary':output}
@app.get('/')
async def home():
return {"message": "Hello World"}
@app.post("/summary")
async def getsummary(user_request_in: SummaryRequest):
payload = {"text":user_request_in.text,"min_length":user_request_in.min_length,"max_length":user_request_in.max_length}
summ = get_summary(payload,tokenizer,model)
summ["Device"]= torch_device
return summ