-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata_generator.py
204 lines (197 loc) · 8.44 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import cv2
import json
import random
import numpy as np
from aug import MixupAugment
from tools import JSON2Bboxes,IOU,ThreadPool
import queue
import time
class DataGenerator:
def __init__(self,imgs_dir,jsons_dir,
img_hw,out_hw_list,anchors_list,
labels,batch_size=-1,data_type="jpg",
print_bool=True):
self._imgs_dir=imgs_dir
self._jsons_dir=jsons_dir
self._files_name=np.array(list(map(lambda x:x.split(".")[0],os.listdir(self._jsons_dir))))
self._files_len=len(self._files_name)
self._img_hw=img_hw
self._out_hw_list=out_hw_list
self._anchors_list=anchors_list
self._anchors_len=len(self._anchors_list[0])
self._heads_len=len(self._anchors_list)
self._labels=labels
self._labels_len=len(labels)
self._batch_size=batch_size
self._data_type=data_type
self._print_bool=print_bool
def __call__(self):
return self.Read()
def _EncodingX(self,x):
return x/255
def _EncodingY(self,y):
bboxes=y
bboxes=self._PreprocessBBoxes(bboxes)
ftmp_list=self._GetOutFtmpList()
if(bboxes.shape[0]>0):
bboxes_list=self._ScaleBBoxesByHWList(bboxes)
ftmp_list=self._Bboxes2Ftmps(ftmp_list,bboxes_list)
return ftmp_list
def _GetImgAndBboxes(self,data_file):
img_path=self._imgs_dir+"/"+data_file+"."+self._data_type
json_path=self._jsons_dir+"/"+data_file+".json"
img=cv2.imread(img_path)
bboxes=JSON2Bboxes(json_path)
return img,bboxes
def _PreprocessBBoxes(self,true_bboxes):
normalized_bboxes=[]
for i,true_bbox in enumerate(true_bboxes):
x,y,w,h,wht,label=true_bbox
if(w<3 or h<3):continue
x=x/self._img_hw[1]
y=y/self._img_hw[0]
w=w/self._img_hw[1]
h=h/self._img_hw[0]
x=np.clip(x,0,1.0)
y=np.clip(y,0,1.0)
w=np.clip(w,1e-8,1.0-x)
h=np.clip(h,1e-8,1.0-y)
label_onehot=np.zeros([self._labels_len+1])
label_onehot[self._labels.index(label)]=1
new_bbox=np.array([(x+w/2),(y+h/2),w,h,wht])
new_bbox=np.concatenate([new_bbox,label_onehot],axis=-1)
normalized_bboxes.append(new_bbox)
return np.array(normalized_bboxes)
def _GetOutFtmp(self,output_hw,anchors_len):
out_ftmp=np.zeros([output_hw[0],
output_hw[1],
anchors_len,
4+6+self._labels_len+1])
out_ftmp[...,-1]=1
return out_ftmp
def _ScaleBBoxes(self,true_bboxes,target_hw):
true_bboxes=np.array(true_bboxes)
true_xywh=true_bboxes[...,0:4]*np.reshape(np.array([target_hw[1],
target_hw[0],
target_hw[1],
target_hw[0]]),
[-1,4])
true_bboxes=np.concatenate([true_xywh,true_bboxes[...,4:]],axis=-1)
return true_bboxes
def _Bbox2Ftmp(self,out_ftmp,true_bbox,anchors,use_best=False,iou_thres=0.2):
output_hw=np.shape(out_ftmp)[:2]
x,y,w,h=true_bbox[:4]
norm_x=x/output_hw[1]
norm_y=y/output_hw[0]
norm_w=w/output_hw[1]
norm_h=h/output_hw[0]
wht=true_bbox[4]
labels=true_bbox[5:]
int_x=np.floor(x).astype('int')
int_y=np.floor(y).astype('int')
iou_list=list(map(lambda anchor:IOU([x,y,w,h],[int_x,int_y,anchor[0],anchor[1]]),anchors))
for anchor_idx,iou in enumerate(iou_list):
if(iou>iou_thres):
if(int_x>=0 and int_x<output_hw[1] and int_y>=0 and int_y<output_hw[0] and \
iou>out_ftmp[int_y,int_x,anchor_idx,9]):
out_ftmp[int_y,int_x,anchor_idx,0]=x-int_x
out_ftmp[int_y,int_x,anchor_idx,1]=y-int_y
out_ftmp[int_y,int_x,anchor_idx,2]=w-anchors[anchor_idx][0]
out_ftmp[int_y,int_x,anchor_idx,3]=h-anchors[anchor_idx][1]
out_ftmp[int_y,int_x,anchor_idx,4]=norm_x
out_ftmp[int_y,int_x,anchor_idx,5]=norm_y
out_ftmp[int_y,int_x,anchor_idx,6]=norm_w
out_ftmp[int_y,int_x,anchor_idx,7]=norm_h
out_ftmp[int_y,int_x,anchor_idx,8]=wht
out_ftmp[int_y,int_x,anchor_idx,9]=iou
out_ftmp[int_y,int_x,anchor_idx,10:]=labels
return
def _ScaleBBoxesByHWList(self,bboxes):
return [self._ScaleBBoxes(bboxes,hw) for hw in self._out_hw_list]
def _GetOutFtmpList(self):
return [self._GetOutFtmp(hw,self._anchors_len) for hw in self._out_hw_list]
def _Bboxes2Ftmps(self,ftmp_list,bboxes_list):
bboxes_buf=[0 for i in range(self._heads_len)]
for i in range(self._heads_len):
bboxes_buf[i]=bboxes_list[i]
for i in range(len(bboxes_buf[0])):
for j in range(self._heads_len):
self._Bbox2Ftmp(ftmp_list[j],bboxes_buf[j][i],self._anchors_list[j],iou_thres=0.2)
return ftmp_list
def _GetRandomeFilesName(self,batch_size):
batch_files=[]
for i in range(batch_size):
batch_files.append(self._files_name[random.randint(0,self._files_len-1)])
return batch_files
def Read(self):
x=[]
y_list=[[] for i in range(self._heads_len)]
if(self._batch_size!=-1):
files_name_1=self._GetRandomeFilesName(self._batch_size)
files_name_2=self._GetRandomeFilesName(self._batch_size)
for i,file_name_1 in enumerate(files_name_1):
if(self._print_bool==True):print(str(i+1)+"th Loading "+file_name_1+"............",end="")
file_name_2=files_name_2[i]
img_1,bboxes_1=self._GetImgAndBboxes(file_name_1)
img_2,bboxes_2=self._GetImgAndBboxes(file_name_2)
img,bboxes=MixupAugment(img_1,bboxes_1,img_2,bboxes_2,self._img_hw)
x.append(self._EncodingX(img))
ftmp_list=self._EncodingY(bboxes)
for j in range(self._heads_len):
y_list[j].append(ftmp_list[j])
if(self._print_bool==True):print("done.")
for j in range(self._heads_len):
y_list[j]=np.array(y_list[j])
return np.array(x),tuple(y_list)
def Generator(self):
while 1:
yield self.Read()
class MultiDataGenerator:
def __init__(self,imgs_dir,jsons_dir,
img_hw,out_hw_list,anchors_list,
labels,batch_size=-1,thread_num=32,
max_queue=64,data_type="jpg",print_bool=True):
self._data_gen=DataGenerator(imgs_dir,jsons_dir,img_hw,
out_hw_list,anchors_list,labels,
batch_size,data_type,print_bool)
self._thread_pool=ThreadPool(thread_num)
self._thread_num=thread_num
self._batch_data_queue=queue.Queue()
self._max_queue=max_queue
self._stop_signal=False
def __call__(self):
return self.Read()
def _ReadFunction(self):
sleep_signal=True
while(1):
if(self._batch_data_queue.qsize()<self._max_queue//2):
sleep_signal=False
elif(self._batch_data_queue.qsize()>=self._max_queue and sleep_signal==False):
sleep_signal=True
if(sleep_signal==False):
batch_data=self._data_gen()
self._batch_data_queue.put(batch_data)
else:
time.sleep(0.01)
if(self._stop_signal==True):break
def Start(self):
for i in range(self._thread_num):
self._thread_pool.Push(self._ReadFunction)
self._thread_pool.Start()
return
def Stop(self):
self._stop_signal=True
self._thread_pool.Stop()
return
def Read(self):
while(1):
try:
batch_data=self._batch_data_queue.get_nowait()
break
except:
pass
return batch_data
def Generator(self):
while(1):
yield self.Read()