-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcslyolo.py
394 lines (359 loc) · 18.2 KB
/
cslyolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import tensorflow as tf
from modules import ConvBN,InputBIFusion,CSLModule,CSLFPN,VanillaFPN
import math
class CSLConv(tf.Module):
def __init__(self,anchors_list,labels_len,name="cslconv"):
super(CSLConv,self).__init__(name=name)
self._anchors_list=anchors_list
self._anchors_num=len(self._anchors_list[0])
self._labels_len=labels_len
self._name=name
self._Build()
@tf.Module.with_name_scope
def _Build(self):
self._outconv=ConvBN(self._anchors_num*(5+self._labels_len+1),
kernel_size=(1,1),
use_bn=False,
activation=None,
name=self._name+"_outconv")
@tf.Module.with_name_scope
def _Grids(self,featmap_hw):
featuremap_hight_idx=tf.range(start=0,limit=featmap_hw[0])
featuremap_hight_idx=tf.expand_dims(featuremap_hight_idx,axis=0)
featuremap_hight_idx=tf.tile(featuremap_hight_idx,[featmap_hw[1],1])
featuremap_hight_idx=tf.transpose(featuremap_hight_idx)
featuremap_width_idx=tf.range(start=0,limit=featmap_hw[1])
featuremap_width_idx=tf.expand_dims(featuremap_width_idx,axis=0)
featuremap_width_idx=tf.tile(featuremap_width_idx,[featmap_hw[0],1])
grids=tf.stack([featuremap_width_idx,featuremap_hight_idx],axis=-1)
grids=tf.reshape(grids,[1,featmap_hw[0],featmap_hw[1],1,2])
grids=tf.cast(grids,tf.float32)
return grids
@tf.Module.with_name_scope
def _RestructInTensor(self,input_ts,anchors):
ftmp_hw=input_ts.get_shape().as_list()[1:3]
ftmp_wh=tf.cast(tf.reverse(ftmp_hw,[-1]),tf.float32)
feature_map=self._outconv(input_ts)
feature_map=tf.reshape(feature_map,[-1,ftmp_hw[0],ftmp_hw[1],self._anchors_num,5+self._labels_len+1])
box_for_fit=tf.concat([tf.sigmoid(feature_map[...,0:2]),feature_map[...,2:4]],axis=-1)
pred_xy=(tf.sigmoid(feature_map[...,0:2])+self._Grids(ftmp_hw))/ftmp_wh
pred_wh=(anchors+feature_map[...,2:4])/ftmp_wh
pred_wh=pred_wh*tf.cast(pred_wh>=0,tf.float32)
ones_mask=tf.cast(pred_wh<=1,tf.float32)
pred_wh=pred_wh*ones_mask+(1-ones_mask)
pred_box=tf.concat([pred_xy,pred_wh],axis=-1)
pred_cnfd=tf.sigmoid(feature_map[...,4:5])
pred_classes=tf.sigmoid(feature_map[...,5:])
output_ts=tf.concat([box_for_fit,pred_box,pred_cnfd,pred_classes],axis=-1)
return output_ts
@tf.Module.with_name_scope
def __call__(self,input_ts_list):
output_ts_list=[]
for i,anchors in enumerate(self._anchors_list):
x=self._RestructInTensor(input_ts_list[i],anchors)
output_ts_list.append(tf.identity(x))
return output_ts_list
class CSLHead(tf.Module):
def __init__(self,
orig_img_hw,
labels_len,
max_boxes_per_cls=10,
score_threshold=0.5,
iou_threshold=0.5,
nms_type="category_nms",
name="cslhead"):
super(CSLHead,self).__init__(name=name)
self._orig_img_hw=orig_img_hw
self._labels_len=labels_len
self._max_boxes_per_cls=max_boxes_per_cls
self._score_threshold=score_threshold
self._iou_threshold=iou_threshold
self._nms_type=nms_type
self._name=name
@tf.Module.with_name_scope
def _PreprocessPredTs(self,pred_tensor):
pred_box=pred_tensor[...,4:8]
pred_cnfd=pred_tensor[...,8:9]
pred_classes=pred_tensor[...,9:]
pred_scores=pred_cnfd*pred_classes
pred_scores=tf.reduce_max(pred_scores,axis=-1)
pred_mask=pred_scores>=self._score_threshold
pred_box=tf.boolean_mask(pred_box,pred_mask)
pred_xy=pred_box[...,0:2]
pred_wh=pred_box[...,2:4]
pred_x1y1=pred_xy-(pred_wh/2.)
pred_x2y2=pred_x1y1+pred_wh
pred_box=tf.concat([pred_x1y1,pred_x2y2],axis=-1)
pred_scores=tf.boolean_mask(pred_scores,pred_mask)
pred_scores=tf.expand_dims(pred_scores,axis=-1)
pred_classes=tf.boolean_mask(pred_classes,pred_mask)
pred_classes=tf.cast(tf.reshape(tf.argmax(pred_classes,axis=-1),[-1,1]),tf.float32)
pred_tensor=tf.concat([pred_box,pred_scores,pred_classes],axis=-1)
pred_x=pred_xy[...,0]*self._orig_img_hw[1]
pred_y=pred_xy[...,1]*self._orig_img_hw[0]
pred_w=pred_wh[...,0]*self._orig_img_hw[1]
pred_h=pred_wh[...,1]*self._orig_img_hw[0]
mask_1=tf.cast(pred_x<0,tf.float32)+tf.cast(pred_y<0,tf.float32)
mask_2=tf.cast(pred_x>=self._orig_img_hw[1],tf.float32)+tf.cast(pred_y>=self._orig_img_hw[0],tf.float32)
mask_3=tf.cast(pred_w<3,tf.float32)+tf.cast(pred_h<3,tf.float32)
mask_4=tf.cast(pred_w>=self._orig_img_hw[1],tf.float32)+tf.cast(pred_h>=self._orig_img_hw[0],tf.float32)
pred_mask=(mask_1+mask_2+mask_3+mask_4)==0
pred_tensor=tf.boolean_mask(pred_tensor,pred_mask)
return pred_tensor
@tf.Module.with_name_scope
def _PostProcessPredTs(self,pred_tensor):
pred_box=pred_tensor[...,:4]
pred_scores=pred_tensor[...,4:5]
pred_classes=pred_tensor[...,5:6]
pred_x1y1=pred_box[...,0:2]
pred_x2y2=pred_box[...,2:4]
pred_wh=pred_x2y2-pred_x1y1
pred_xy=pred_x1y1
pred_xy=tf.clip_by_value(pred_xy,0.0,1.0-1e-8)
pred_wh=tf.clip_by_value(pred_wh,1e-8,1.0-pred_xy)
pred_box=tf.concat([pred_xy,pred_wh],axis=-1)
pred_box=pred_box*tf.cast(tf.stack([self._orig_img_hw[1],
self._orig_img_hw[0],
self._orig_img_hw[1],
self._orig_img_hw[0]],axis=0),tf.float32)
_,top_indices=tf.nn.top_k(tf.squeeze(pred_scores,axis=-1),k=tf.minimum(100,tf.shape(pred_scores)[0]))
pred_box=tf.gather(pred_box,top_indices)
pred_scores=tf.gather(pred_scores,top_indices)
pred_classes=tf.gather(pred_classes,top_indices)
pred_tensor=tf.concat([pred_box,pred_scores,pred_classes],axis=-1)
return pred_tensor
@tf.Module.with_name_scope
def _NMS(self,pred_tensor,max_bboxes=100,iou_thres=0.5,score_thres=0.01):
pred_box=pred_tensor[...,:4]
pred_scores=pred_tensor[...,4:5]
pred_classes=pred_tensor[...,5:6]
pred_scores=tf.squeeze(pred_scores,axis=-1)
nms_index=tf.image.non_max_suppression(pred_box,
pred_scores,
max_bboxes,
iou_threshold=iou_thres,
score_threshold=score_thres)
pred_box=tf.gather(pred_box,nms_index)
pred_scores=tf.gather(pred_scores,nms_index)
pred_scores=tf.expand_dims(pred_scores,axis=-1)
pred_classes=tf.gather(pred_classes,nms_index)
pred_tensor=tf.concat([pred_box,pred_scores,pred_classes],axis=-1)
return pred_tensor
@tf.Module.with_name_scope
def _SoftNMS(self,pred_tensor,max_bboxes=100,iou_thres=0.5,score_thres=0.01):
pred_box=pred_tensor[...,:4]
pred_scores=pred_tensor[...,4:5]
pred_classes=pred_tensor[...,5:6]
pred_scores=tf.squeeze(pred_scores,axis=-1)
nms_index,pred_scores=tf.image.non_max_suppression_with_scores(pred_box,
pred_scores,
max_bboxes,
iou_threshold=iou_thres,
score_threshold=score_thres,
soft_nms_sigma=0.5)
pred_box=tf.gather(pred_box,nms_index)
pred_scores=tf.expand_dims(pred_scores,axis=-1)
pred_classes=tf.gather(pred_classes,nms_index)
pred_tensor=tf.concat([pred_box,pred_scores,pred_classes],axis=-1)
return pred_tensor
@tf.Module.with_name_scope
def _CategoryNMS(self,pred_tensor):
pred_box=pred_tensor[...,:4]
pred_scores=pred_tensor[...,4:5]
pred_classes=pred_tensor[...,5:6]
for i in range(self._labels_len):
pred_mask=pred_classes==i
pred_mask=tf.squeeze(pred_mask,-1)
_pred_box=tf.boolean_mask(pred_box,pred_mask)
_pred_scores=tf.boolean_mask(pred_scores,pred_mask)
_pred_classes=tf.boolean_mask(pred_classes,pred_mask)
_pred_tensor=tf.concat([_pred_box,_pred_scores,_pred_classes],axis=-1)
_pred_tensor=self._SoftNMS(_pred_tensor,self._max_boxes_per_cls,self._iou_threshold,self._score_threshold)
if(i==0):final_pred_tensor=_pred_tensor
else:final_pred_tensor=tf.concat([final_pred_tensor,_pred_tensor],axis=0)
return final_pred_tensor
@tf.Module.with_name_scope
def __call__(self,input_ts_list):
output_ts_list=[]
for i,input_ts in enumerate(input_ts_list):
output_ts=self._PreprocessPredTs(input_ts)
output_ts_list.append(output_ts)
output_ts=tf.concat(output_ts_list,axis=0)
if(self._nms_type=="category_nms"):
output_ts=self._CategoryNMS(output_ts)
elif(self._nms_type=="nms"):
output_ts=self._NMS(output_ts,self._max_boxes_per_cls,self._iou_threshold,self._score_threshold)
elif(self._nms_type=="soft_nms"):
output_ts=self._SoftNMS(output_ts,self._max_boxes_per_cls,self._iou_threshold,self._score_threshold)
output_ts=self._PostProcessPredTs(output_ts)
return output_ts
class CSLYOLOBody(tf.Module):
def __init__(self,fpn_filters=96,repeat=3,name="cslyolobody"):
super(CSLYOLOBody,self).__init__(name=name)
self._fpn_filters=round(fpn_filters)
self._repeat=round(repeat)
self._name=name
self._Build()
@tf.Module.with_name_scope
def _Build(self):
self._l1_cspg=CSLModule(filters=self._fpn_filters,down_rate=1.0,use_se=True,name=self._name+"_l1_cspg")
self._l3_cspg=CSLModule(filters=self._fpn_filters,down_rate=1.0,use_se=True,name=self._name+"_l3_cspg")
self._l5_cspg=CSLModule(filters=self._fpn_filters,down_rate=1.0,use_se=True,name=self._name+"_l5_cspg")
self._l2_bifusion=InputBIFusion(name=self._name+"_l2_bifusion")
self._l4_bifusion=InputBIFusion(name=self._name+"_l4_bifusion")
self._cslfpn=CSLFPN(repeat=self._repeat,name=self._name+"_cslfpn")
# self._vanillafpn=VanillaFPN(name=self._name+"_vanillafpn")
@tf.Module.with_name_scope
def __call__(self,bacbone_l1,bacbone_l2,bacbone_l3):
orig_l1,orig_l2,orig_l3=bacbone_l1,bacbone_l2,bacbone_l3
l1=self._l1_cspg(orig_l1)
l3=self._l3_cspg(orig_l2)
l5=self._l5_cspg(orig_l3)
l2=self._l2_bifusion(l1,l3)
l4=self._l4_bifusion(l3,l5)
l1,l2,l3,l4,l5=self._cslfpn([l1,l2,l3,l4,l5])
# l1,l2,l3,l4,l5=self._vanillafpn([l1,l2,l3,l4,l5])
return l1,l2,l3,l4,l5
class CSLLoss(tf.Module):
def __init__(self,name="cslloss"):
super(CSLLoss,self).__init__(name=name)
self._name=name
@tf.Module.with_name_scope
def _TrueWeight(self,true_y):
true_wht=tf.squeeze(true_y[...,8:9],-1)
return true_wht
@tf.Module.with_name_scope
def _TrueMask(self,true_y):
true_mask=tf.cast(tf.squeeze(true_y[...,8:9],-1)>0.,tf.float32)
return true_mask
@tf.Module.with_name_scope
def _IgnoreMask(self,true_y,pred_y,true_mask):
pred_boxes=pred_y[...,4:8]
true_boxes=true_y[...,4:8]
pred_xy=pred_boxes[...,0:2]
pred_wh=pred_boxes[...,2:4]
pred_xy=tf.clip_by_value(pred_xy,0.0,1.0)
pred_wh=tf.clip_by_value(pred_wh,1e-8,1.0)
pred_xy=tf.expand_dims(pred_xy,4)
pred_wh=tf.expand_dims(pred_wh,4)
pred_wh_half=pred_wh/2.
pred_mins=pred_xy-pred_wh_half
pred_maxes=pred_xy+pred_wh_half
mask_true_boxes=tf.boolean_mask(true_boxes,tf.cast(true_mask,tf.bool))
mask_true_boxes_shape=tf.shape(mask_true_boxes)
mask_true_boxes=tf.reshape(mask_true_boxes,[1,1,1,1,mask_true_boxes_shape[0],4])
true_xy=mask_true_boxes[...,0:2]
true_wh=mask_true_boxes[...,2:4]
true_wh_half=true_wh/2.
true_mins=true_xy-true_wh_half
true_maxes=true_xy+true_wh_half
intersect_mins=tf.maximum(pred_mins,true_mins)
intersect_maxes=tf.minimum(pred_maxes,true_maxes)
intersect_wh=tf.maximum(intersect_maxes-intersect_mins,tf.zeros_like(intersect_maxes))
intersect_area=intersect_wh[...,0]*intersect_wh[...,1]
pred_areas=pred_wh[...,0]*pred_wh[...,1]
true_areas=true_wh[...,0]*true_wh[...,1]
union_area=pred_areas+true_areas-intersect_area
iou=tf.math.divide_no_nan(intersect_area,union_area)
best_iou=tf.reduce_max(iou,axis=4)
ignore_mask=tf.cast(best_iou<0.5,tf.float32)
return ignore_mask
@tf.Module.with_name_scope
def _CIoU(self,true_y,pred_y,true_mask,true_wht):
pred_xy=pred_y[...,4:6]
pred_wh=pred_y[...,6:8]
pred_xy=tf.clip_by_value(pred_xy,0.0,1.0)
pred_wh=tf.clip_by_value(pred_wh,1e-8,1.0)
pred_wh_half=pred_wh/2.
pred_mins=pred_xy-pred_wh_half
pred_maxes=pred_xy+pred_wh_half
true_xy=true_y[...,4:6]
true_wh=true_y[...,6:8]
true_wh_half=true_wh/2.
true_mins=true_xy-true_wh_half
true_maxes=true_xy+true_wh_half
intersect_mins=tf.maximum(pred_mins,true_mins)
intersect_maxes=tf.minimum(pred_maxes,true_maxes)
intersect_wh=tf.maximum(intersect_maxes-intersect_mins,tf.zeros_like(intersect_maxes))
intersect_area=intersect_wh[...,0]*intersect_wh[...,1]
pred_areas=pred_wh[...,0]*pred_wh[...,1]
true_areas=true_wh[...,0]*true_wh[...,1]
union_area=pred_areas+true_areas-intersect_area
iou=tf.math.divide_no_nan(intersect_area,union_area)
enclose_left_up=tf.minimum(pred_mins,true_mins)
enclose_right_down=tf.maximum(pred_maxes,true_maxes)
enclose_section=tf.maximum(enclose_right_down-enclose_left_up,tf.zeros_like(enclose_right_down))
enclose_c2=enclose_section[...,0]**2+enclose_section[...,1]**2
p2=(pred_xy[...,0]-true_xy[...,0])**2+(pred_xy[...,1]-true_xy[...,1])**2
atan1=tf.atan(pred_wh[...,0]/pred_wh[...,1])
temp_a=tf.keras.backend.switch(true_wh[...,1]>0.0,true_wh[...,1],true_wh[...,1]+1.0)
atan2=tf.atan(true_wh[...,0]/temp_a)
v=4.0*(atan1-atan2)**2/(math.pi**2)
a=v/(1-iou+v)
ciou=iou-1.0*p2/enclose_c2-1.0*a*v
ciou=tf.expand_dims(ciou,axis=-1)
coord_loss_scale=2-true_wh[...,0]*true_wh[...,1]
ciou_loss=coord_loss_scale*true_mask*true_wht*tf.reduce_sum((1.0-ciou),axis=-1)
ciou_loss=tf.reduce_sum(ciou_loss,axis=(1,2,3))
return ciou_loss
@tf.Module.with_name_scope
def _BboxesLoss(self,true_y,pred_y,true_mask,true_wht):
box_for_fit_true=true_y[...,:4]
box_for_fit_pred=pred_y[...,:4]
true_wh=true_y[...,6:8]
coord_loss_scale=2-true_wh[...,0]*true_wh[...,1]
xy_loss=tf.keras.backend.binary_crossentropy(box_for_fit_true[...,:2],box_for_fit_pred[...,:2])
#smooth l1
huber_delta=0.5
wh_loss=tf.math.abs(box_for_fit_true[...,2:]-box_for_fit_pred[...,2:])
wh_loss=tf.keras.backend.switch(wh_loss<huber_delta,0.5*wh_loss**2,huber_delta*(wh_loss-0.5*huber_delta))
coord_loss=tf.reduce_sum(xy_loss+wh_loss,axis=-1)
coord_loss=coord_loss_scale*true_mask*true_wht*coord_loss
coord_loss=tf.reduce_sum(coord_loss,axis=(1,2,3))
return coord_loss
@tf.Module.with_name_scope
def _ConfidenceLoss(self,pred_y,true_mask,ignore_mask,true_wht):
pred_cnfd=pred_y[...,8:9]
pstv_bce_loss=tf.keras.backend.binary_crossentropy(tf.ones_like(pred_cnfd),pred_cnfd)
ngtv_bce_loss=tf.keras.backend.binary_crossentropy(tf.zeros_like(pred_cnfd),pred_cnfd)
pstv_loss=true_mask*true_wht*tf.reduce_sum(pstv_bce_loss,axis=-1)
ngtv_loss=(1-true_mask)*ignore_mask*tf.reduce_sum(ngtv_bce_loss,axis=-1)
cnfd_loss=pstv_loss+ngtv_loss
cnfd_loss=tf.reduce_sum(cnfd_loss,axis=(1,2,3))
return cnfd_loss
@tf.Module.with_name_scope
def _ConfidenceFocalLoss(self,pred_y,true_mask,ignore_mask,true_wht,alpha=0.5,gamma=1.5):
pred_cnfd=pred_y[...,8:9]
pstv_fctr=alpha
ngtv_fctr=1-alpha
pstv_wht=pstv_fctr*(1-pred_cnfd)**gamma
ngtv_wht=ngtv_fctr*pred_cnfd**gamma
pstv_bce_loss=tf.keras.backend.binary_crossentropy(tf.ones_like(pred_cnfd),pred_cnfd)
ngtv_bce_loss=tf.keras.backend.binary_crossentropy(tf.zeros_like(pred_cnfd),pred_cnfd)
pstv_loss=true_mask*true_wht*tf.reduce_sum(pstv_wht*pstv_bce_loss,axis=-1)
ngtv_loss=(1-true_mask)*ignore_mask*tf.reduce_sum(ngtv_wht*ngtv_bce_loss,axis=-1)
cnfd_loss=pstv_loss+ngtv_loss
cnfd_loss=tf.reduce_sum(cnfd_loss,axis=(1,2,3))
return cnfd_loss
@tf.Module.with_name_scope
def _ClassesLoss(self,true_y,pred_y,true_mask,true_wht):
true_cls=true_y[...,10:]
pred_cls=pred_y[...,9:]
bce_loss=tf.keras.backend.binary_crossentropy(true_cls,pred_cls)
cls_loss=true_mask*true_wht*tf.reduce_sum(bce_loss,axis=-1)
cls_loss=tf.reduce_sum(cls_loss,axis=(1,2,3))
return cls_loss
@tf.Module.with_name_scope
def __call__(self):
def _CSLLoss(true_y,pred_y):
true_mask=self._TrueMask(true_y)
ignore_mask=self._IgnoreMask(true_y,pred_y,true_mask)
true_wht=self._TrueWeight(true_y)
iou_loss=self._CIoU(true_y,pred_y,true_mask,true_wht)
coord_loss=self._BboxesLoss(true_y,pred_y,true_mask,true_wht)
cnfd_loss=self._ConfidenceLoss(pred_y,true_mask,ignore_mask,true_wht)
# cnfd_loss=self._ConfidenceFocalLoss(pred_y,true_mask,ignore_mask,true_wht)
classes_loss=self._ClassesLoss(true_y,pred_y,true_mask,true_wht)
loss=iou_loss+coord_loss+cnfd_loss+classes_loss
return loss
return _CSLLoss