-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_finetuning_si.py
351 lines (277 loc) · 15.8 KB
/
run_finetuning_si.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# coding=utf-8
"""MPC-BERT-2.0 fine-tuning runner on the downstream task of speaker identification."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from time import time
import tensorflow as tf
import modeling_speaker as modeling
import optimization
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("train_dir", 'train.tfrecord',
"The input train data dir. Should contain the .tsv files (or other data files) for the task.")
flags.DEFINE_string("valid_dir", 'valid.tfrecord',
"The input valid data dir. Should contain the .tsv files (or other data files) for the task.")
flags.DEFINE_string("output_dir", 'output',
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string("task_name", 'SpeakerIdentification',
"The name of the task to train.")
flags.DEFINE_string("bert_config_file", 'uncased_L-12_H-768_A-12/bert_config.json',
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("vocab_file", 'uncased_L-12_H-768_A-12/vocab.txt',
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string("init_checkpoint", 'uncased_L-12_H-768_A-12/bert_model.ckpt',
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool("do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("max_seq_length", 320,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_integer("max_utr_num", 7,
"Maximum utterance number.")
flags.DEFINE_bool("do_train", True,
"Whether to run training.")
flags.DEFINE_float("warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("train_batch_size", 12,
"Total batch size for training.")
flags.DEFINE_float("learning_rate", 2e-5,
"The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_epochs", 5,
"Total number of training epochs to perform.")
def print_configuration_op(FLAGS):
print('My Configurations:')
for name, value in FLAGS.__flags.items():
value = value.value
if type(value) == float:
print(' %s:\t %f' % (name, value))
elif type(value) == int:
print(' %s:\t %d' % (name, value))
elif type(value) == str:
print(' %s:\t %s' % (name, value))
elif type(value) == bool:
print(' %s:\t %s' % (name, value))
else:
print('%s:\t %s' % (name, value))
print('End of configuration')
def count_data_size(file_name):
sample_nums = 0
for record in tf.compat.v1.python_io.tf_record_iterator(file_name):
sample_nums += 1
return sample_nums
def parse_exmp(serial_exmp):
input_data = tf.compat.v1.parse_single_example(serial_exmp,
features={
"input_sents":
tf.compat.v1.FixedLenFeature([FLAGS.max_seq_length],
tf.int64),
"input_mask":
tf.compat.v1.FixedLenFeature([FLAGS.max_seq_length],
tf.int64),
"segment_ids":
tf.compat.v1.FixedLenFeature([FLAGS.max_seq_length],
tf.int64),
"speaker_ids":
tf.compat.v1.FixedLenFeature([FLAGS.max_seq_length],
tf.int64),
"cls_positions":
tf.compat.v1.FixedLenFeature([FLAGS.max_utr_num], tf.int64),
"rsp_position":
tf.compat.v1.FixedLenFeature([1], tf.int64),
"label_ids":
tf.compat.v1.FixedLenFeature([FLAGS.max_utr_num], tf.int64),
}
)
# So cast all int64 to int32.
for name in list(input_data.keys()):
t = input_data[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
input_data[name] = t
input_sents = input_data["input_sents"]
input_mask = input_data["input_mask"]
segment_ids = input_data["segment_ids"]
speaker_ids = input_data["speaker_ids"]
cls_positions = input_data["cls_positions"]
rsp_position = input_data["rsp_position"]
labels = input_data['label_ids']
return input_sents, input_mask, segment_ids, speaker_ids, cls_positions, rsp_position, labels
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
# sequence_tensor = [batch_size, seq_length, width]
# positions = [batch_size, max_utr_num]
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) # [batch_size, 1]
flat_positions = tf.reshape(positions + flat_offsets, [-1]) # [batch_size*max_utr_num, ]
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions) # [batch_size*max_utr_num, width]
return output_tensor
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, speaker_ids, cls_positions, rsp_position,
labels, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
speaker_ids=speaker_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
input_tensor = gather_indexes(model.get_sequence_output(), cls_positions) # [batch_size*max_utr_num, dim]
input_shape = modeling.get_shape_list(input_tensor, expected_rank=2)
width = input_shape[-1]
positions_shape = modeling.get_shape_list(cls_positions, expected_rank=2)
max_utr_num = positions_shape[-1]
with tf.compat.v1.variable_scope("cls/speaker_restore"):
# We apply one more non-linear transformation before the output layer.
with tf.compat.v1.variable_scope("transform"):
input_tensor = tf.compat.v1.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor) # [batch_size*max_utr_num, dim]
input_tensor = tf.reshape(input_tensor, [-1, max_utr_num, width]) # [batch_size, max_utr_num, dim]
rsp_tensor = gather_indexes(input_tensor, rsp_position) # [batch_size*1, dim]
rsp_tensor = tf.reshape(rsp_tensor, [-1, 1, width]) # [batch_size, 1, dim]
output_weights = tf.compat.v1.get_variable(
"output_weights",
shape=[width, width],
initializer=modeling.create_initializer(bert_config.initializer_range))
logits = tf.matmul(tf.einsum('aij,jk->aik', rsp_tensor, output_weights),
input_tensor, transpose_b=True) # [batch_size, 1, max_utr_num]
logits = tf.squeeze(logits, [1]) # [batch_size, max_utr_num]
mask = tf.sequence_mask(tf.reshape(rsp_position, [-1, ]), max_utr_num,
dtype=tf.float32) # [batch_size, max_utr_num]
logits = logits * mask + -1e9 * (1 - mask)
log_probs = tf.nn.log_softmax(logits, axis=-1) # [batch_size, max_utr_num]
# loss
one_hot_labels = tf.cast(labels, "float") # [batch_size, max_utr_num]
per_example_loss = - tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) # [batch_size, ]
mean_loss = tf.reduce_mean(per_example_loss, name="mean_loss")
# accuracy
predictions = tf.argmax(log_probs, axis=-1, output_type=tf.int32) # [batch_size, ]
predictions_one_hot = tf.one_hot(predictions, depth=max_utr_num, dtype=tf.float32) # [batch_size, max_utr_num]
correct_prediction = tf.reduce_sum(predictions_one_hot * one_hot_labels, -1) # [batch_size, ]
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"), name="accuracy")
return mean_loss, logits, log_probs, accuracy
def run_epoch(epoch, op_name, sess, training, logits, accuracy, mean_loss, train_opt):
step = 0
t0 = time()
try:
while True:
step += 1
batch_logits, batch_loss, _, batch_accuracy = sess.run([logits, mean_loss, train_opt, accuracy],
feed_dict={training: True})
if step % 1000 == 0:
tf.compat.v1.logging.info("Epoch: %i, Step: %d, Time (min): %.2f, Loss: %.4f, Accuracy: %.2f" %
(epoch, step, (time() - t0) / 60.0, batch_loss, 100 * batch_accuracy))
except tf.errors.OutOfRangeError:
tf.compat.v1.logging.info("Epoch: %i, Step: %d, Time (min): %.2f, Loss: %.4f, Accuracy: %.2f" %
(epoch, step, (time() - t0) / 60.0, batch_loss, 100 * batch_accuracy))
pass
best_score = 0.0
def run_test(epoch, op_name, sess, training, prob, accuracy, saver, dir_path):
step = 0
t0 = time()
num_test = 0
num_correct = 0.0
test_accuracy = 0
try:
while True:
step += 1
batch_accuracy, predicted_prob = sess.run([accuracy, prob], feed_dict={training: False})
num_test += len(predicted_prob)
num_correct += len(predicted_prob) * batch_accuracy
if step % 100 == 0:
tf.compat.v1.logging.info("Epoch: %i, Step: %d, Time (min): %.2f" % (epoch, step, (time() - t0) / 60.0))
except tf.errors.OutOfRangeError:
test_accuracy = num_correct / num_test
print('num_test_samples: {}, test_accuracy: {}'.format(num_test, test_accuracy))
global best_score
if op_name == 'valid' and test_accuracy > best_score:
best_score = test_accuracy
dir_path = os.path.join(dir_path, "epoch_{}".format(epoch))
saver.save(sess, dir_path)
tf.compat.v1.logging.info(">> Save model!")
return test_accuracy
def main(_):
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
print_configuration_op(FLAGS)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
root_path = FLAGS.output_dir
if not os.path.exists(root_path):
os.makedirs(root_path)
timestamp = str(int(time()))
root_path = os.path.join(root_path, timestamp)
tf.compat.v1.logging.info('root_path: {}'.format(root_path))
if not os.path.exists(root_path):
os.makedirs(root_path)
train_data_size = count_data_size(FLAGS.train_dir)
tf.compat.v1.logging.info('train data size: {}'.format(train_data_size))
valid_data_size = count_data_size(FLAGS.valid_dir)
tf.compat.v1.logging.info('valid data size: {}'.format(valid_data_size))
num_train_steps = train_data_size // FLAGS.train_batch_size * FLAGS.num_train_epochs
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
filenames = tf.compat.v1.placeholder(tf.string, shape=[None])
shuffle_size = tf.compat.v1.placeholder(tf.int64)
dataset = tf.compat.v1.data.TFRecordDataset(filenames)
dataset = dataset.map(parse_exmp) # Parse the record into tensors.
dataset = dataset.repeat(1)
# buffer_size 100
dataset = dataset.shuffle(shuffle_size)
dataset = dataset.batch(FLAGS.train_batch_size)
iterator = dataset.make_initializable_iterator()
input_sents, input_mask, segment_ids, speaker_ids, cls_positions, rsp_position, labels = iterator.get_next()
training = tf.compat.v1.placeholder(tf.bool)
mean_loss, logits, log_probs, accuracy = create_model(bert_config=bert_config,
is_training=training,
input_ids=input_sents,
input_mask=input_mask,
segment_ids=segment_ids,
speaker_ids=speaker_ids,
cls_positions=cls_positions,
rsp_position=rsp_position,
labels=labels,
use_one_hot_embeddings=False)
# init model with pre-training
tvars = tf.compat.v1.trainable_variables()
if FLAGS.init_checkpoint:
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
FLAGS.init_checkpoint)
tf.compat.v1.train.init_from_checkpoint(FLAGS.init_checkpoint, assignment_map)
tf.compat.v1.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
train_opt = optimization.create_optimizer(mean_loss, FLAGS.learning_rate, num_train_steps, num_warmup_steps, False)
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
saver = tf.compat.v1.train.Saver()
if FLAGS.do_train:
with tf.compat.v1.Session(config=config) as sess:
sess.run(tf.compat.v1.global_variables_initializer())
for epoch in range(FLAGS.num_train_epochs):
tf.compat.v1.logging.info('Train begin epoch {}'.format(epoch))
sess.run(iterator.initializer,
feed_dict={filenames: [FLAGS.train_dir], shuffle_size: 1024})
run_epoch(epoch, "train", sess, training, logits, accuracy, mean_loss, train_opt)
tf.compat.v1.logging.info('Valid begin')
sess.run(iterator.initializer,
feed_dict={filenames: [FLAGS.valid_dir], shuffle_size: 1})
run_test(epoch, "valid", sess, training, log_probs, accuracy, saver, root_path)
if __name__ == "__main__":
tf.compat.v1.app.run()