-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_dianwang.py
141 lines (108 loc) · 4.8 KB
/
train_dianwang.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
'''
@Author: xxxmy
@Github: github.com/VectXmy
@Date: 2019-09-26
@Email: [email protected]
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
from model.fcos import FCOSDetector
import torch
import torchvision.transforms as transforms
# from dataloader.VOC_dataset import VOCDataset
from dataloader.dataset import Dataset
import math, time
# from torch.utils.tensorboard import SummaryWriter
from tensorboardX import SummaryWriter
model = FCOSDetector(mode="training")
# model = torch.nn.DataParallel(model.cuda(), device_ids=range(torch.cuda.device_count()))
model = model.cuda()
# model=FCOSDetector(mode="training")
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-4)
BATCH_SIZE = 16
EPOCHS = 30
WARMPUP_STEPS_RATIO = 0.12
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.432, 0.474, 0.379), (0.249, 0.254, 0.246))
])
# 电网5部件:(0.423, 0.444, 0.394), (0.220, 0.213, 0.245)
# 电网绝缘子:(0.432, 0.474, 0.379), (0.249, 0.254, 0.246)
# VOC: (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
# 2012_train 2007_val
# cfg = {'images_root': '/home', 'train_path': '/home/benkebishe01/fcos_sample/dataloader/2007_trainval.txt',
# 'test_path': '/home/benkebishe01/fcos_sample/dataloader/2007_test.txt',
# 'img_size': 512}
cfg = {'images_root': '/home', 'train_path': '/mnt/hdd1/benkebishe01/VOCdevkit_insulator/2007_train.txt',
'test_path': '/mnt/hdd1/benkebishe01/VOCdevkit_insulator/2007_val.txt',
'img_size': 512}
train_dataset = Dataset(cfg['images_root'], cfg['train_path'], img_size=cfg['img_size'], transform=transform,
train=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(
Dataset(cfg['images_root'], cfg['test_path'], img_size=cfg['img_size'],
transform=transform, train=False),
batch_size=4,
shuffle=False, )
steps_per_epoch = len(train_dataset) // BATCH_SIZE
TOTAL_STEPS = steps_per_epoch * EPOCHS
WARMPUP_STEPS = TOTAL_STEPS * WARMPUP_STEPS_RATIO
# global GLOBAL_STEPS
GLOBAL_STEPS = 1
LR_INIT = 5e-5
LR_END = 1e-6
draw = False
if draw:
writer = SummaryWriter(comment='9')
def lr_func():
if GLOBAL_STEPS < WARMPUP_STEPS:
lr = GLOBAL_STEPS / WARMPUP_STEPS * LR_INIT
else:
lr = LR_END + 0.5 * (LR_INIT - LR_END) * (
(1 + math.cos((GLOBAL_STEPS - WARMPUP_STEPS) / (TOTAL_STEPS - WARMPUP_STEPS) * math.pi))
)
return float(lr)
model.train()
for epoch in range(EPOCHS):
loss_ = []
for epoch_step, (batch_imgs, batch_boxes, batch_classes, loc_target, cls_target) in enumerate(train_loader):
# batch_imgs, batch_boxes, batch_classes, loc_target, cls_target = data
batch_imgs = batch_imgs.cuda()
batch_boxes = batch_boxes.cuda()
batch_classes = batch_classes.cuda()
loc_target = loc_target.cuda()
cls_target = cls_target.cuda()
lr = lr_func()
for param in optimizer.param_groups:
param['lr'] = lr
# start_time = time.time()
optimizer.zero_grad()
loss_anchor, loss_fcos, loss = model([batch_imgs, batch_boxes, batch_classes, loc_target, cls_target])
# loss = loss.mean()
loss.backward()
optimizer.step()
# end_time = time.time()
# cost_time = int((end_time-start_time)*1000)
print(
"global_steps:%d epoch:%d steps:%d/%d cls_loss:%.4f reg_loss:%.4f loc_anchor:%.4f cls_anchor:%.4f lr=%.4e" % \
(GLOBAL_STEPS, epoch + 1, epoch_step + 1, steps_per_epoch, loss_fcos[0], loss_fcos[1], loss_anchor[0],
loss_anchor[1], lr))
'''
print(
"global_steps:%d epoch:%d steps:%d/%d loss_fcos:%.4f loss_anchor:%.4f cnt_loss:%.4f"% \
(GLOBAL_STEPS, epoch + 1, epoch_step + 1, steps_per_epoch, loss_fcos[0]+loss_fcos[2], loss_anchor[0]+loss_anchor[1], loss_fcos[1]))
'''
if draw:
writer.add_scalar("loss/loss", loss, global_step=GLOBAL_STEPS)
writer.add_scalar("loss/cls_loss", loss_fcos[0], global_step=GLOBAL_STEPS)
# writer.add_scalar("loss/cnt_loss",loss_fcos[1], global_step=GLOBAL_STEPS)
writer.add_scalar("loss/reg_loss", loss_fcos[1], global_step=GLOBAL_STEPS)
writer.add_scalar("loss/loc_anchor", loss_anchor[0], global_step=GLOBAL_STEPS)
writer.add_scalar("loss/cls_anchor", loss_anchor[1], global_step=GLOBAL_STEPS)
writer.add_scalar("lr", lr, global_step=GLOBAL_STEPS)
GLOBAL_STEPS += 1
loss_.append(loss)
loss_avg = torch.mean(torch.stack(loss_))
torch.save(model.state_dict(), "/mnt/hdd1/benkebishe01/dianwang/insulator/voc_epoch%d_loss%.4f.pth" % (
epoch + 1, loss_avg.item()))