-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobust_svm.py
89 lines (65 loc) · 2.95 KB
/
robust_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 6 14:52:19 2018
@author: noch
"""
from robsvm import robsvm
from cvxopt import matrix, normal
import pandas as pd
from sklearn.metrics import accuracy_score
from testing import test
from data_prepared import read_data, prepare_data_div, split_data
isTr = 1
for i in range (2,3) :
X = read_data("Xtr"+str(i), isTr)
Y = read_data("Ytr"+str(i), isTr)
max_info = ""
max_predic = 0
Y['Bound'][Y['Bound'] == 0] = -1
#f= open("/Users/noch/Documents/workspace/data_challenge/result/console_svm_ker_gaussi_C_big.txt","a+")
#f= open("/home/jibril/Desktop/data_challenge/result/console_svm_ker_gaussi.txt","a+")
print("\n testing on Xtr" +str(i)+ ", Ytr" +str(i))
for k in range(2,5):
print("\n number of char:"+str(k+1))
data_new = prepare_data_div(X, k+1)
data_new['Bound'] = Y['Bound']
data_train, data_test = split_data(data_new, 70)
X_train = data_train.iloc[:,:-1]
Y_tr = pd.DataFrame.as_matrix(data_train['Bound']).astype(float).tolist()
X_te = pd.DataFrame.as_matrix(data_test.iloc[:,:-1])
Y_te = pd.DataFrame.as_matrix(data_test['Bound']).astype(float).tolist()
print("\n finished preparing number of char:" + str(k+1))
gamma_arr = [100, 20, 10, 1, 0.1, 0.01]
#C_arr = [0.01]
X_tr = matrix(X_train.values.T.tolist())
#m = X_tr.shape[0]
#n = X_tr.shape[1]
m,n = X_tr.size
for gamma in gamma_arr:
# generate uncertainty ellipsoids
k = 2
P = [0.1*normal(10*n,n) for i in range(k)]
P = [ p.T*p for p in P]
e = matrix(0,(m,1))
for i in range(m):
if Y_tr[i] == -1: e[i] = 1
# solve SVM training problem
w, b, u, v, iterations = robsvm(X_tr, Y_tr, gamma, P, e)
#print(w)
print("b:"+str(b))
X_train_m = pd.DataFrame.as_matrix(X_train)
Y_predicted_tr = test(w, b, X_train_m)
Y_predicted_te = test(w, b, X_te)
predicted_score_tr = accuracy_score(Y_predicted_tr, Y_tr, normalize=False)/len(Y_predicted_tr)
predicted_score_te = accuracy_score(Y_predicted_te, Y_te, normalize=False)/len(Y_predicted_te)
print("\n gamma:" + str(gamma))
print("\n result_tr: "
+ str(accuracy_score(Y_predicted_tr, Y_tr, normalize=False)) +
"/" + str(len(Y_predicted_tr))
+ " = " + str(predicted_score_tr))
print("\n result_te: "
+ str(accuracy_score(Y_predicted_te, Y_te, normalize=False)) +
"/" + str(len(Y_predicted_te))
+ " = " + str(predicted_score_te) + "\n\n")
break