-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_svm_test.py
60 lines (37 loc) · 1.33 KB
/
main_svm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 31 20:54:18 2018
@author: noch
"""
import pandas as pd
from data_prepared import read_data, prepare_data_no_div
from testing import test_ker_id
from svm_ker import svm_ker_func
f= open("/Users/noch/Documents/workspace/data_challenge/result/Yte_svm_poly.csv","a+")
nm_char = []
C = [5, 5, 5]
z = []
for i in range (3) :
isTr = 1
Xtr = read_data("Xtr"+str(i), isTr)
Ytr = read_data("Ytr"+str(i), isTr)
Ytr['Bound'][Ytr['Bound'] == 0] = -1
isTr = 0
Xte = read_data("Xte"+str(i), isTr)
Xte['Id'] = pd.DataFrame({'Id':range(i*1000, (i+1) * 1000)})
Xtr_p = prepare_data_no_div(Xtr, nm_char[i])
Xtr_p['Bound'] = Ytr['Bound']
Xte_p = prepare_data_no_div(pd.DataFrame(Xte['DNA']), nm_char[i])
Xte_p['Id'] = Xte['Id']
Xtr_p = Xtr_p.sample(frac=1)
X_tr = pd.DataFrame.as_matrix(Xtr_p.iloc[:,:-1])
Y_tr = pd.DataFrame.as_matrix(Xtr_p['Bound']).astype(float).tolist()
alpha, b = svm_ker_func(X_tr, Y_tr, C[i], z[i])
result = test_ker_id(X_tr, Y_tr, Xte_p, alpha, b, z[i])
result['Bound'][result['Bound'] == -1] = 0
s = ""
for index, row in result.iterrows():
s = s + str(int(row['Id'])) + "," + str(int(row['Bound'])) + "\n"
f.write(s)
f.close()