-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
184 lines (150 loc) · 8.05 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import argparse
import zipfile
import numpy as np
from tqdm import tqdm
from h3ds.dataset import H3DS
from h3ds.mesh import Mesh
from h3ds.log import logger
from h3ds.utils import error_to_color, download_file_from_google_drive, create_parent_directory, create_directory, remove
def method_file_id(method, config_id=None):
if method == 'idr':
if config_id == 'config_v1':
return '1ReyXoGCfmcItHn9ClkwuyD_8mVYZ-BE2'
elif method == 'h3d-net':
if config_id == 'config_v1':
return '1iwZ3cxJzq22zXb3hYL5DfcGWiEmOyjBW'
elif method == 'sira++':
if config_id == 'config_v1':
return '11zXync7346X9OZQIyVAfqCacL1FHKEBP'
elif config_id == 'config_v2':
return '1tjlIESyjkYGEkp6RkbyuCdrhLIBR6ZFA'
else:
raise ValueError(f'Method {method}')
raise ValueError(f'Config_id {config_id}')
def download_reconstructions(token, method, local_dir, config_id=None):
method_dir = os.path.join(local_dir, f"{method}_{config_id}")
method_zip = os.path.join(local_dir, f"{method}_{config_id}", f'{method}.zip')
if os.path.exists(method_dir):
logger.info(
f'{method} reconstructions found at {method_dir} - Skipping download'
)
return method_dir
else:
logger.info(f'Downloading {method} results to {method_zip}')
create_parent_directory(method_zip)
download_file_from_google_drive(
id=method_file_id(method, config_id=config_id),
destination=method_zip
)
# Unzip file
logger.info(f'Unzipping results file to {method_dir}')
create_directory(method_dir)
with zipfile.ZipFile(method_zip, 'r') as zip_ref:
for member in tqdm(zip_ref.infolist(), desc='Extracting...'):
zip_ref.extract(member, method_dir, pwd=token.encode('utf-8'))
remove(method_zip)
return method_dir
def main(h3ds_path, h3ds_token, method, config_id, output_dir):
# Create instance of h3ds and download it if not available
h3ds = H3DS(path=h3ds_path, config_id=config_id)
h3ds.download(token=h3ds_token)
# Download cached reconstruction results for selected method
recs_dir = os.path.join(output_dir, 'reconstructions')
method_dir = download_reconstructions(token=h3ds_token,
method=method,
local_dir=recs_dir,
config_id=config_id)
# Evaluate `method` on all the scenes used in the sira++_v2 paper and store the metric
metrics_head = {}
metrics_face = {}
h3ds_scenes = h3ds.scenes(tags={'sira++'})
eval_dir = os.path.join(output_dir, 'evaluation', method)
num_scenes = len(h3ds_scenes)
for i, scene_id in enumerate(h3ds_scenes):
metrics_head[scene_id] = {}
metrics_face[scene_id] = {}
h3ds_views_configs = h3ds.default_views_configs(scene_id)
for views_config_id in h3ds_views_configs:
logger.info(
f'Evaluating {method} reconstruction with {views_config_id} views from scene {scene_id}. ({i+1}/{num_scenes})'
)
# Get scene in millimiters
mesh_gt, images, masks, cameras = h3ds.load_scene(
scene_id, views_config_id)
# Load predicted 3D reconstruction.
mesh_pred = Mesh().load(
os.path.join(method_dir, f'{scene_id}_{views_config_id}.ply'))
landmarks_pred = None
# Evaluate scene. The `landmarks_pred` are optional and, if provided, they will be used
# for an initial alignment in the evaluation process. If not provided, it will be assumed
# that the predicted mesh is already coarsely aligned with the ground truth mesh.
chamfer_gt_pred, chamfer_pred_gt, mesh_gt, mesh_pred_aligned = \
h3ds.evaluate_scene(scene_id, mesh_pred, landmarks_pred)
metrics_head[scene_id][views_config_id] = np.mean(chamfer_gt_pred)
logger.info(
f' > Chamfer distance full head (mm): {metrics_head[scene_id][views_config_id]}'
)
mesh_gt.save(
os.path.join(eval_dir, 'full_head',
f'{scene_id}_{views_config_id}_gt.obj'))
# The chamfer computed from prediction to ground truth is only provided for
# visualization purporses (i.e. heatmaps).
mesh_pred_aligned.vertices_color = error_to_color(chamfer_pred_gt,
clipping_error=5)
mesh_pred_aligned.save(
os.path.join(eval_dir, 'full_head',
f'{scene_id}_{views_config_id}_pred.obj'))
# Evaluate reconstruction in the facial region, defined by a sphere of radius 95mm centered
# in the tip of the nose. In this case, a more fine alignment is performed, taking into account
# only the vertices from this region. This evaluation should be used when assessing methods
# that only reconstruct the frontal face area (i.e. Basel Face Bodel)
chamfer_gt_pred, chamfer_pred_gt, mesh_gt_region, mesh_pred_aligned = \
h3ds.evaluate_scene(scene_id, mesh_pred, landmarks_pred, region_id='face_sphere')
# Note that in both cases we only report the chamfer distane computed from the ground truth
# to the prediction, since here we have control over the region where the metric is computed.
metrics_face[scene_id][views_config_id] = np.mean(chamfer_gt_pred)
logger.info(
f' > Chamfer distance face (mm): {metrics_face[scene_id][views_config_id]}'
)
mesh_gt_region.save(
os.path.join(eval_dir, 'face_sphere',
f'{scene_id}_{views_config_id}_gt.obj'))
# Again, the chamfer computed from prediction to ground truth is only provided for
# visualization purporses (i.e. heatmaps).
mesh_pred_aligned.vertices_color = error_to_color(chamfer_pred_gt,
clipping_error=5)
# For improved visualization the predicted mesh is cut to be inside the unit sphere of 95mm.
# Ideally one should use landmarks_pred but here we are using landmarks_true because the
# landmarks_pred are not available.
landmarks_true = h3ds.load_landmarks(scene_id)
mask_sphere = np.where(
np.linalg.norm(mesh_pred_aligned.vertices -
mesh_gt.vertices[landmarks_true['nose_tip']],
axis=-1) < 95)
mesh_pred_aligned = mesh_pred_aligned.cut(mask_sphere)
mesh_pred_aligned.save(
os.path.join(eval_dir, 'face_sphere',
f'{scene_id}_{views_config_id}_pred.obj'))
# Show results per view
logger.info(f'Average Chamfer Distances for {method} as face / head in mm:')
for v in h3ds_views_configs:
metric_head = np.mean([metrics_head[s][v] for s in h3ds_scenes])
metric_face = np.mean([metrics_face[s][v] for s in h3ds_scenes])
logger.info(f' > views: {v} - error: {metric_face} / {metric_head}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Exemplifies how to evaluate a method')
parser.add_argument('--h3ds-path', help='H3DS dataset path', required=True)
parser.add_argument('--h3ds-token', help='H3DS access token', required=True)
parser.add_argument('--config-id', help='Config version. [config_v1, config_v2]', default='config_v2')
parser.add_argument('--method', help='[idr, h3d-net, sira++]', default='sira++')
parser.add_argument('--output-dir',
help='Output directory to store the results',
required=True)
args = parser.parse_args()
main(h3ds_path=args.h3ds_path,
h3ds_token=args.h3ds_token,
method=args.method,
config_id=args.config_id,
output_dir=args.output_dir)