forked from madrury/linalg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrand.c
84 lines (69 loc) · 2.19 KB
/
rand.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "vector.h"
#include "matrix.h"
void init_random() {
srand(time(NULL));
}
/***********************
* Uniform Distribution
***********************/
double _random_uniform(double low, double high) {
assert(low < high);
return (high - low) * ((double) rand() / (double) RAND_MAX) - low;
}
struct vector* vector_random_uniform(int length, double low, double high) {
assert(length > 0);
struct vector* v = vector_new(length);
for(int i = 0; i < length; i++) {
VECTOR_IDX_INTO(v, i) = _random_uniform(low, high);
}
return v;
}
struct matrix* matrix_random_uniform(int n_row, int n_col, double low, double high) {
assert(n_row > 0);
assert(n_col >0);
struct matrix* M = matrix_new(n_row, n_col);
for(int i = 0; i < n_row; i++) {
for(int j = 0; j < n_col; j++) {
MATRIX_IDX_INTO(M, i, j) = _random_uniform(low, high);
}
}
return M;
}
/*************************
* Gaussian Dristribution
*************************/
/* Generate a number distributed as random gaussian noise using the Box-Muller
* method.
The trick of using the static keyword to remember pairs of values is taken
from wikipedia.
*/
double _random_gaussian(double mu, double sigma) {
const double two_pi = 2.0 * 3.14159265358979323846;
static double z0, z1;
double u0, u1;
// Since the strategy employed generates pairs of random values, we can,
// on each other call, simply remember the leftover value and return it.
static bool generate_new_values = false;
generate_new_values = !generate_new_values;
if (!generate_new_values) {
return z1 * sigma + mu;
}
u0 = _random_uniform(0, 1);
u1 = _random_uniform(0, 1);
z0 = sqrt(-2.0 * log(u0)) * cos(two_pi * u1);
z1 = sqrt(-2.0 * log(u0)) * sin(two_pi * u1);
return z0 * sigma + mu;
}
struct vector* vector_random_gaussian(int length, double mu, double sigma) {
assert(length > 0);
struct vector* v = vector_new(length);
for(int i = 0; i < length; i++) {
VECTOR_IDX_INTO(v, i) = _random_gaussian(mu, sigma);
}
return v;
}