Skip to content

Latest commit

 

History

History
101 lines (76 loc) · 3.76 KB

README.md

File metadata and controls

101 lines (76 loc) · 3.76 KB

BASISS

Broad Area Satellite Imagery Semantic Segmentation

==============================================================================

Code Overview

This package segments satellite imagery over large swaths of land (or sea). The included examples use SpaceNet labels to identify roads in high resolution satellite imagery. Access to a GPU is required for training, though inference will function (slowly) on a CPU. See our blog post for further details.

==============================================================================

  1. Installation

     A. Install nvidia-docker
     B. Build container
     	nvidia-docker build -t basiss path_to_basiss/docker
     C. Download scripts
     	download this github repo (or put it in the docker file...)
     D. Run container
     	nvidia-docker run -it -v /raid:/raid --name bassiss_train basiss		
    

==============================================================================

  1. Download SpaceNet data, see the instructions.

==============================================================================

  1. Create training masks. The script used here is a lightly modified version of the code described in our blog. Execute these scripts in a unique conda environment; conda install insctuctions are here. The commands below create the training images; replace "train" with "test" to create testing images.

    basiss_path=/raid/local/src/basiss cd $basiss_path/src conda env create -f apls_environment.yml # to deactivate environment: source deactivate source activate apls_environment

    #for details on arguments type: python create_spacenet_masks.py --help python $basiss_path/create_spacenet_masks.py
    --path_data=/path_to_spacenet_data/AOI_2_Vegas_Train
    --output_df_path=$basiss_path/packaged_data/AOI_2_Train_2m_file_locs.csv
    --buffer_meters=2
    --n_bands=3
    --make_plots=0
    --overwrite_ims=0

Alt text

==============================================================================

  1. Train a model

    # train Las Vegas SpaceNet 3-band data with unet, and sliced into 400 
    #  	pixel cutouts
    basiss_path=/raid/local/src/basiss
    outname=AOI_2_Vegas_unet_2m_train
    cd $basiss_path
    nohup python -u src/basiss.py \
    	--path $basiss_path \
    	--model unet \
    	--mode train \
    	--file_list AOI_2_Train_2m_file_locs.csv \
    	--slice_x 400 --slice_y 400 \
    	--stride_x 300 --stride_y 300 \
    	--n_bands 3 \
    	--n_classes 2 \
    	--batchsize 32 \
    	--validation_split 0.1 \
    	--early_stopping_patience 4 \
    	--epochs 128 \
    	--gpu 0 \
    	--prefix $outname > \
    		results/$outname.log & tail -f results/$outname.log
    

==============================================================================

  1. Test on images of arbitrary size

     # test Las Vegas SpaceNet 3-band data with unet, and sliced into 400 
     #  	pixel cutouts
     basiss_path=/raid/local/src/basiss
     outname=AOI_2_Vegas_unet_2m_test
     cd $basiss_path
     nohup python -u src/basiss.py \
     	--path $basiss_path \
     	--model unet \
     	--mode test \
     	--file_list massive_file_list.csv \
     	--model_weights AOI_2_Vegas_unet_2m_train_model_best.hdf5 \
     	--slice_x 400 --slice_y 400 \
     	--stride_x 300 --stride_y 300 \
     	--n_bands 3 \
     	--n_classes 2 \
     	--batchsize 16 \
     	--gpu 3 \
     	--prefix $outname > \
     		results/$outname.log & tail -f results/$outname.log
    

Alt text