forked from soapy1/mexican-wolves
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_sim.py
170 lines (130 loc) · 5.15 KB
/
run_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from pack import Pack, generate_pack
from random import normalvariate
from math import ceil
import matplotlib.pyplot as plt
import statistics
def main():
# Pack sizes for gray wolves range from about 2 to 8 members [4]
packs = [generate_pack(ceil(normalvariate(5,3))) for i in range(0,3)]
sim_100y_500p = run_sim(100, 500, packs.copy())
sim_100y_50p = run_sim(100, 50, packs.copy())
print('first pop')
print(histogram_of_allele_variance_total(packs))
print('100 years, 500 max population, final pop')
print(histogram_of_allele_variance_total(sim_100y_500p[-1]['packs']))
print('100 years, 50 max population, final pop')
print(histogram_of_allele_variance_total(sim_100y_50p[-1]['packs']))
hist_100y_500p_last = histogram_of_loci_total(sim_100y_500p[-1]['packs'])
hist_100y_500p_first = histogram_of_loci_total(sim_100y_500p[0]['packs'])
hist_100y_50p_last = histogram_of_loci_total(sim_100y_50p[-1]['packs'])
hist_100y_50p_first = histogram_of_loci_total(sim_100y_50p[0]['packs'])
plot_histogram(1,'Histogram of allele variation in locus "a" for max population 500 over 100 years', hist_100y_500p_first, hist_100y_500p_last)
plot_histogram(2,'Histogram of allele variation in locus "a" for max population 50 over 100 years',hist_100y_50p_first, hist_100y_50p_last)
plot_time_stats(sim_100y_50p, "max population 50, 100 years", 3)
plot_time_stats(sim_100y_500p, "max population 500, 100 years", 6)
plt.show()
import pdb; pdb.set_trace()
def plot_histogram(n, title, hist_first, hist_last):
fig1 = plt.figure(n)
fig1.suptitle(title)
ax = fig1.add_subplot(211)
ax.hist(hist_first['a'])
ax.set_title('first generation')
ax.set_xlabel('allele')
ax.set_ylabel('number of wolves')
ax.set_xlim([0,5])
ax = fig1.add_subplot(212)
ax.hist(hist_last['a'])
ax.set_title('last generation')
ax.set_xlabel('allele')
ax.set_ylabel('number of wolves')
ax.set_xlim([0,5])
def run_sim(max_years, max_population, packs=None):
# start simulation at year 0
year = 0
if packs is None:
# Pack sizes for gray wolves range from about 2 to 8 members [4]
packs = [generate_pack(ceil(normalvariate(5,3))) for i in range(0,3)]
time_data = [{
'year':0,
'packs':packs,
'stats':{
'num_packs':len(packs),
'wolf_pop':wolf_population(packs),
'mean_var':average_genetic_variance_total(packs)}
}]
for i in range(0,max_years):
year += 1;
next_iter_packs = []
for p in packs:
p.age()
if wolf_population(packs) < max_population:
p.mate()
p.deaths()
if len(p.wolves) > 8:
next_iter_packs.extend(split_pack(p))
elif len(p.wolves) > 0:
next_iter_packs.append(p)
packs = next_iter_packs
time_data.append({
'year':year,
'packs':packs,
'stats':{
'num_packs':len(packs),
'wolf_pop':wolf_population(packs),
'mean_var':average_genetic_variance_total(packs)}
})
return time_data
def plot_time_stats(time_data, title, n=1, plot=False):
years = [d['year'] for d in time_data]
num_packs = [d['stats']['num_packs'] for d in time_data]
wolf_pop = [d['stats']['wolf_pop'] for d in time_data]
mean_var = [d['stats']['mean_var'] for d in time_data]
plt.figure(n)
plt.plot(years, num_packs, 'ro')
plt.title(title)
plt.ylabel('num packs')
plt.xlabel('years')
plt.figure(n+1)
plt.plot(years, wolf_pop, 'ro')
plt.title(title)
plt.ylabel('wolf population')
plt.xlabel('years')
plt.figure(n+2)
plt.plot(years, mean_var, 'ro')
plt.title(title)
plt.ylabel('mean allele variation')
plt.xlabel('years')
if plot:
plt.show()
def split_pack(p):
len_new_pack = ceil(len(p.wolves)/2)
new_packs = [Pack(p.wolves[0:len_new_pack]), Pack(p.wolves[len_new_pack:len(p.wolves)])]
return new_packs
def wolf_population(packs):
return sum(len(p.wolves) for p in packs)
def wolf_pop_genetic_variance(packs):
return sum(p.average_genetic_variance() for p in packs)/len(packs)
def wolf_pop_genetic_std_dev(packs):
return sum(p.average_genetic_std_dev() for p in packs)/len(packs)
def ages_lsp(p):
alsp = [{'age': p.wolves[i].age, 'lsp': p.wolves[i].lifespan} for i in range(0,len(p.wolves))]
return alsp
def histogram_of_allele_variance_total(packs):
histogram = histogram_of_loci_total(packs)
for k in histogram.keys():
histogram[k] = statistics.pvariance(histogram[k])
return histogram
def histogram_of_loci_total(packs):
histogram = {'a':[], 'b':[], 'c':[], 'd':[], 'e':[], 'f':[]}
for p in packs:
merge_histograms(histogram, p.histogram_of_loci())
return histogram
def average_genetic_variance_total(packs):
allele_variance = histogram_of_allele_variance_total(packs)
return statistics.mean(allele_variance.values())
def merge_histograms(a, b):
for k in a.keys():
a[k].extend(b[k])
if __name__=='__main__':
main()