-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExperiment2_Step2.py
61 lines (45 loc) · 1.61 KB
/
Experiment2_Step2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
##### Import
import sys
import numpy as np
from lib import tools
from lib import cmdline
from lib import dataset
from lib import classifier
from lib import Brian_encoder as Bencoder
from lib import Ivern_encoder as Iencoder
##### Argument
ratio = 0.2
nTree = 500
Config = cmdline.ArgumentParser().parse_args()
errMsg = cmdline.ArgumentCheck(Config)
if errMsg != "":
exit(errMsg)
##### Main
EncodeberIvern = Iencoder.Iencoder(Config.positive_data, Config.negative_data)
EncodeberBrian = Bencoder.Encode(Config.positive_data, Config.negative_data)
Features = {
"EGAAC" : EncodeberIvern.ToEGAAC(),
"BINARY" : EncodeberIvern.ToBINARY(),
"EAAC" : EncodeberIvern.ToEAAC(),
"PWM_d2" : EncodeberBrian.ToPWM_d2(),
"PWM_d3" : EncodeberBrian.ToPWM_d3(),
}
ColNames = ["Sn", "Sp", "Acc", "MCC", "AUC", "Combination"]
print("\t".join(ColNames))
fOut = open("Experiment2_Step2.txt", "w")
fOut.write("\t".join(ColNames) + "\n")
for SetCombs in tools.GetAllCombination(Features.keys()):
AllSets = []
for i in range(len(SetCombs)):
setSin = np.array(Features[SetCombs[i]][0].values.tolist())
AllSets.append(setSin)
X = np.concatenate(AllSets, axis=1)
y = np.array(Features[SetCombs[0]][1].values.tolist()).reshape(-1)
X_train, X_test, y_train, y_test = dataset.SplitDataset(X, y, ratio)
model = classifier.RandomForest(nTree)
model.fit(X_train, y_train.ravel())
evaluation = dataset.Evaluation(model.predict(X_test), y_test)
line = "\t".join([str(round(i, 5)) for i in evaluation]) + "\t" + "+".join(SetCombs)
print(line)
fOut.write(line + "\n")
del(model)