forked from khoih-prog/TimerInterrupt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathISR_Timers_Array_Simple.ino
197 lines (148 loc) · 7.31 KB
/
ISR_Timers_Array_Simple.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/****************************************************************************************************************************
ISR_Timers_Array_Simple.ino
For Arduino and Adadruit AVR 328(P) and 32u4 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt
Licensed under MIT license
Now we can use these new 16 ISR-based timers, while consuming only 1 hardware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*****************************************************************************************************************************/
// These define's must be placed at the beginning before #include "TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
#if ( defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || \
defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_MINI) || defined(ARDUINO_AVR_ETHERNET) || \
defined(ARDUINO_AVR_FIO) || defined(ARDUINO_AVR_BT) || defined(ARDUINO_AVR_LILYPAD) || defined(ARDUINO_AVR_PRO) || \
defined(ARDUINO_AVR_NG) || defined(ARDUINO_AVR_UNO_WIFI_DEV_ED) || defined(ARDUINO_AVR_DUEMILANOVE) || defined(ARDUINO_AVR_FEATHER328P) || \
defined(ARDUINO_AVR_METRO) || defined(ARDUINO_AVR_PROTRINKET5) || defined(ARDUINO_AVR_PROTRINKET3) || defined(ARDUINO_AVR_PROTRINKET5FTDI) || \
defined(ARDUINO_AVR_PROTRINKET3FTDI) )
#define USE_TIMER_1 true
#warning Using Timer1
#else
#define USE_TIMER_3 true
#warning Using Timer3
#endif
#include "TimerInterrupt.h"
#include "ISR_Timer.h"
#include <SimpleTimer.h> // https://github.com/schinken/SimpleTimer
ISR_Timer ISR_timer;
#ifndef LED_BUILTIN
#define LED_BUILTIN 13
#endif
#define LED_TOGGLE_INTERVAL_MS 1000L
// You have to use longer time here if having problem because Arduino AVR clock is low, 16MHz => lower accuracy.
// Tested OK with 1ms when not much load => higher accuracy.
#define TIMER_INTERVAL_MS 1L
volatile uint32_t startMillis = 0;
volatile uint32_t deltaMillis2s = 0;
volatile uint32_t deltaMillis5s = 0;
volatile uint32_t previousMillis2s = 0;
volatile uint32_t previousMillis5s = 0;
void TimerHandler()
{
static bool toggle = false;
static int timeRun = 0;
ISR_timer.run();
// Toggle LED every LED_TOGGLE_INTERVAL_MS = 2000ms = 2s
if (++timeRun == ((LED_TOGGLE_INTERVAL_MS) / TIMER_INTERVAL_MS) )
{
timeRun = 0;
//timer interrupt toggles pin LED_BUILTIN
digitalWrite(LED_BUILTIN, toggle);
toggle = !toggle;
}
}
void doingSomething2s()
{
unsigned long currentMillis = millis();
deltaMillis2s = currentMillis - previousMillis2s;
previousMillis2s = currentMillis;
}
void doingSomething5s()
{
unsigned long currentMillis = millis();
deltaMillis5s = currentMillis - previousMillis5s;
previousMillis5s = currentMillis;
}
/////////////////////////////////////////////////
#define SIMPLE_TIMER_MS 2000L
// Init SimpleTimer
SimpleTimer simpleTimer;
// Here is software Timer, you can do somewhat fancy stuffs without many issues.
// But always avoid
// 1. Long delay() it just doing nothing and pain-without-gain wasting CPU power.Plan and design your code / strategy ahead
// 2. Very long "do", "while", "for" loops without predetermined exit time.
void simpleTimerDoingSomething2s()
{
static unsigned long previousMillis = startMillis;
unsigned long currMillis = millis();
Serial.print(F("SimpleTimer : programmed ")); Serial.print(SIMPLE_TIMER_MS);
Serial.print(F("ms, current time ms : ")); Serial.print(currMillis);
Serial.print(F(", Delta ms : ")); Serial.println(currMillis - previousMillis);
Serial.print(F("Timer2s actual : ")); Serial.println(deltaMillis2s);
Serial.print(F("Timer5s actual : ")); Serial.println(deltaMillis5s);
previousMillis = currMillis;
}
////////////////////////////////////////////////
void setup()
{
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
while (!Serial);
Serial.print(F("\nStarting ISR_Timers_Array_Simple on "));
Serial.println(BOARD_TYPE);
Serial.println(TIMER_INTERRUPT_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 1-5 for MEGA, 1,3,4 for 16u4/32u4
// Timer 2 is 8-bit timer, only for higher frequency
// Timer 4 of 16u4 and 32u4 is 8/10-bit timer, only for higher frequency
#if USE_TIMER_1
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
if (ITimer1.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler))
{
Serial.print(F("Starting ITimer1 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
#elif USE_TIMER_3
ITimer3.init();
if (ITimer3.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler))
{
Serial.print(F("Starting ITimer3 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer3. Select another freq. or timer"));
#endif
ISR_timer.setInterval(2000L, doingSomething2s);
ISR_timer.setInterval(5000L, doingSomething5s);
// You need this timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary.
simpleTimer.setInterval(SIMPLE_TIMER_MS, simpleTimerDoingSomething2s);
}
#define BLOCKING_TIME_MS 10000L
void loop()
{
// This unadvised blocking task is used to demonstrate the blocking effects onto the execution and accuracy to Software timer
// You see the time elapse of ISR_Timer still accurate, whereas very unaccurate for Software Timer
// The time elapse for 2000ms software timer now becomes 3000ms (BLOCKING_TIME_MS)
// While that of ISR_Timer is still prefect.
delay(BLOCKING_TIME_MS);
// You need this Software timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary
// You don't need to and never call ISR_Timer.run() here in the loop(). It's already handled by ISR timer.
simpleTimer.run();
}