Skip to content

Commit 6b9d1f8

Browse files
committed
update week 48
1 parent 4c284d9 commit 6b9d1f8

File tree

7 files changed

+271
-256
lines changed

7 files changed

+271
-256
lines changed

doc/pub/week48/html/week48-bs.html

+8-8
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,8 @@
88
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
99
<meta name="generator" content="DocOnce: https://github.com/doconce/doconce/" />
1010
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
11-
<meta name="description" content="Week 48: Support Vector Machines and Summary of course">
12-
<title>Week 48: Support Vector Machines and Summary of course</title>
11+
<meta name="description" content="Week 48: Gradient boosting and summary of course">
12+
<title>Week 48: Gradient boosting and summary of course</title>
1313
<!-- Bootstrap style: bootstrap -->
1414
<!-- doconce format html week48.do.txt --html_style=bootstrap --pygments_html_style=default --html_admon=bootstrap_panel --html_output=week48-bs --no_mako -->
1515
<link href="https://netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css" rel="stylesheet">
@@ -143,7 +143,7 @@
143143
None,
144144
'choose-a-model-and-algorithm'),
145145
('Preparing Your Data', 2, None, 'preparing-your-data'),
146-
('Which Activation and Weights to Choose in Neural Networks',
146+
('Which activation and weights to choose in neural networks',
147147
2,
148148
None,
149149
'which-activation-and-weights-to-choose-in-neural-networks'),
@@ -258,7 +258,7 @@
258258
<span class="icon-bar"></span>
259259
<span class="icon-bar"></span>
260260
</button>
261-
<a class="navbar-brand" href="week48-bs.html">Week 48: Support Vector Machines and Summary of course</a>
261+
<a class="navbar-brand" href="week48-bs.html">Week 48: Gradient boosting and summary of course</a>
262262
</div>
263263
<div class="navbar-collapse collapse navbar-responsive-collapse">
264264
<ul class="nav navbar-nav navbar-right">
@@ -299,7 +299,7 @@
299299
<!-- navigation toc: --> <li><a href="._week48-bs032.html#starting-your-machine-learning-project" style="font-size: 80%;">Starting your Machine Learning Project</a></li>
300300
<!-- navigation toc: --> <li><a href="._week48-bs033.html#choose-a-model-and-algorithm" style="font-size: 80%;">Choose a Model and Algorithm</a></li>
301301
<!-- navigation toc: --> <li><a href="._week48-bs034.html#preparing-your-data" style="font-size: 80%;">Preparing Your Data</a></li>
302-
<!-- navigation toc: --> <li><a href="._week48-bs035.html#which-activation-and-weights-to-choose-in-neural-networks" style="font-size: 80%;">Which Activation and Weights to Choose in Neural Networks</a></li>
302+
<!-- navigation toc: --> <li><a href="._week48-bs035.html#which-activation-and-weights-to-choose-in-neural-networks" style="font-size: 80%;">Which activation and weights to choose in neural networks</a></li>
303303
<!-- navigation toc: --> <li><a href="._week48-bs036.html#optimization-methods-and-hyperparameters" style="font-size: 80%;">Optimization Methods and Hyperparameters</a></li>
304304
<!-- navigation toc: --> <li><a href="._week48-bs037.html#resampling" style="font-size: 80%;">Resampling</a></li>
305305
<!-- navigation toc: --> <li><a href="._week48-bs038.html#other-courses-on-data-science-and-machine-learning-at-uio" style="font-size: 80%;">Other courses on Data science and Machine Learning at UiO</a></li>
@@ -348,7 +348,7 @@
348348
<!-- ------------------- main content ---------------------- -->
349349
<div class="jumbotron">
350350
<center>
351-
<h1>Week 48: Support Vector Machines and Summary of course</h1>
351+
<h1>Week 48: Gradient boosting and summary of course</h1>
352352
</center> <!-- document title -->
353353

354354
<!-- author(s): Morten Hjorth-Jensen -->
@@ -357,11 +357,11 @@ <h1>Week 48: Support Vector Machines and Summary of course</h1>
357357
</center>
358358
<!-- institution -->
359359
<center>
360-
<b>Department of Physics, University of Oslo, Norway</b>
360+
<b>Department of Physics and Center for Computing in Science Education, University of Oslo, Norway</b>
361361
</center>
362362
<br>
363363
<center>
364-
<h4>Nov 21, 2024</h4>
364+
<h4>Nov 23, 2024</h4>
365365
</center> <!-- date -->
366366
<br>
367367

doc/pub/week48/html/week48-reveal.html

+27-23
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@
99
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
1010
<meta name="generator" content="DocOnce: https://github.com/doconce/doconce/" />
1111
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
12-
<meta name="description" content="Week 48: Support Vector Machines and Summary of course">
13-
<title>Week 48: Support Vector Machines and Summary of course</title>
12+
<meta name="description" content="Week 48: Gradient boosting and summary of course">
13+
<title>Week 48: Gradient boosting and summary of course</title>
1414

1515
<!-- reveal.js: https://lab.hakim.se/reveal-js/ -->
1616

@@ -168,7 +168,7 @@
168168
<section>
169169
<!-- ------------------- main content ---------------------- -->
170170
<center>
171-
<h1 style="text-align: center;">Week 48: Support Vector Machines and Summary of course</h1>
171+
<h1 style="text-align: center;">Week 48: Gradient boosting and summary of course</h1>
172172
</center> <!-- document title -->
173173

174174
<!-- author(s): Morten Hjorth-Jensen -->
@@ -177,11 +177,11 @@ <h1 style="text-align: center;">Week 48: Support Vector Machines and Summary of
177177
</center>
178178
<!-- institution -->
179179
<center>
180-
<b>Department of Physics, University of Oslo, Norway</b>
180+
<b>Department of Physics and Center for Computing in Science Education, University of Oslo, Norway</b>
181181
</center>
182182
<br>
183183
<center>
184-
<h4>Nov 21, 2024</h4>
184+
<h4>Nov 23, 2024</h4>
185185
</center> <!-- date -->
186186
<br>
187187

@@ -205,7 +205,11 @@ <h2 id="plan-for-week-47">Plan for week 47 </h2>
205205

206206
<p><li> Work and Discussion of project 3</li>
207207

208-
<p><li> Last weekly exercise,</li>
208+
<p><li> Last weekly exercise</li>
209+
210+
<p><li> Lab sessions at usual times.</li>
211+
212+
<p><li> For the week of December 2-6, lab sessions atart at 10am and end 4pm, room F&#216;434, Tuesday and Wednesday</li>
209213
</ul>
210214
</div>
211215

@@ -214,7 +218,7 @@ <h2 id="plan-for-week-47">Plan for week 47 </h2>
214218
<b>Plans for the lecture Monday 25 November, with video suggestions etc</b>
215219
<p>
216220
<ol>
217-
<p><li> Bossting and gradient boosting and ensemble models</li>
221+
<p><li> Boosting and gradient boosting and ensemble models</li>
218222
<p><li> Summary of course</li>
219223
<p><li> Readings and Videos:
220224
<ol type="a"></li>
@@ -1249,7 +1253,7 @@ <h2 id="statistical-analysis-and-optimization-of-data">Statistical analysis and
12491253
<p><li> Gradient methods for data optimization</li>
12501254
<p><li> Estimation of errors using cross-validation, bootstrapping and jackknife methods;</li>
12511255
<p><li> Practical optimization using Singular-value decomposition and least squares for parameterizing data.</li>
1252-
<p><li> Principal Component Analysis to reduce the number of features.</li>
1256+
<p><li> Not discussed: Principal Component Analysis to reduce the number of features.</li>
12531257
</ol>
12541258
</section>
12551259

@@ -1281,7 +1285,7 @@ <h2 id="machine-learning">Machine learning </h2>
12811285
<p><li> Boosting and gradient boosting</li>
12821286
</ol>
12831287
<p>
1284-
<p><li> Support vector machines
1288+
<p><li> Not discussed this year: Support vector machines
12851289
<ol type="a"></li>
12861290
<p><li> Binary classification and multiclass classification</li>
12871291
<p><li> Kernel methods</li>
@@ -1308,12 +1312,12 @@ <h2 id="learning-outcomes-and-overarching-aims-of-this-course">Learning outcomes
13081312
<ul>
13091313
<p><li> Understand linear methods for regression and classification;</li>
13101314
<p><li> Learn about neural network;</li>
1311-
<p><li> Learn about bagging, boosting and trees</li>
1312-
<p><li> Support vector machines</li>
1315+
<p><li> Learn about bagging, boosting and trees
1316+
<!-- * Support vector machines --></li>
13131317
<p><li> Learn about basic data analysis;</li>
13141318
<p><li> Be capable of extending the acquired knowledge to other systems and cases;</li>
13151319
<p><li> Have an understanding of central algorithms used in data analysis and machine learning;</li>
1316-
<p><li> Work on numerical projects to illustrate the theory. The projects play a central role and you are expected to know modern programming languages like Python or C++.</li>
1320+
<p><li> Work on numerical projects to illustrate the theory. The projects play a central role.</li>
13171321
</ul>
13181322
</section>
13191323

@@ -1322,7 +1326,7 @@ <h2 id="perspective-on-machine-learning">Perspective on Machine Learning </h2>
13221326

13231327
<ol>
13241328
<p><li> Rapidly emerging application area</li>
1325-
<p><li> Experiment AND theory are evolving in many many fields. Still many low-hanging fruits.</li>
1329+
<p><li> Experiment AND theory are evolving in many many fields.</li>
13261330
<p><li> Requires education/retraining for more widespread adoption</li>
13271331
<p><li> A lot of &#8220;word-of-mouth&#8221; development methods</li>
13281332
</ol>
@@ -1354,7 +1358,7 @@ <h2 id="starting-your-machine-learning-project">Starting your Machine Learning P
13541358
<ol>
13551359
<p><li> Identify problem type: classification, regression</li>
13561360
<p><li> Consider your data carefully</li>
1357-
<p><li> Choose a simple model that fits 1. and 2.</li>
1361+
<p><li> Choose a simple model that fits 1 and 2</li>
13581362
<p><li> Consider your data carefully again! Think of data representation more carefully.</li>
13591363
<p><li> Based on your results, feedback loop to earliest possible point</li>
13601364
</ol>
@@ -1400,10 +1404,10 @@ <h2 id="preparing-your-data">Preparing Your Data </h2>
14001404
</section>
14011405

14021406
<section>
1403-
<h2 id="which-activation-and-weights-to-choose-in-neural-networks">Which Activation and Weights to Choose in Neural Networks </h2>
1407+
<h2 id="which-activation-and-weights-to-choose-in-neural-networks">Which activation and weights to choose in neural networks </h2>
14041408

14051409
<ol>
1406-
<p><li> RELU? ELU?</li>
1410+
<p><li> RELU? ELU? GELU? etc</li>
14071411
<p><li> Sigmoid or Tanh?</li>
14081412
<p><li> Set all weights to 0?</li>
14091413
<ul>
@@ -1461,17 +1465,17 @@ <h2 id="resampling">Resampling </h2>
14611465
<section>
14621466
<h2 id="other-courses-on-data-science-and-machine-learning-at-uio">Other courses on Data science and Machine Learning at UiO </h2>
14631467

1464-
<p>The link here <a href="https://www.mn.uio.no/english/research/about/centre-focus/innovation/data-science/studies/" target="_blank"><tt>https://www.mn.uio.no/english/research/about/centre-focus/innovation/data-science/studies/</tt></a> gives an excellent overview of courses on Machine learning at UiO.</p>
1465-
14661468
<ol>
1467-
<p><li> <a href="http://www.uio.no/studier/emner/matnat/math/STK2100/index-eng.html" target="_blank">STK2100 Machine learning and statistical methods for prediction and classification</a>.</li>
1468-
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN3050/index-eng.html" target="_blank">IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning</a>. Introductory course in machine learning and AI with an algorithmic approach.</li>
1469+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/fys/FYS5429/index-eng.html" target="_blank">FYS5429 &#8211; Advanced machine learning and data analysis for the physical sciences</a></li>
1470+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN3050/index-eng.html" target="_blank">IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning</a>. Introductory course in machine learning and AI</li>
14691471
<p><li> <a href="http://www.uio.no/studier/emner/matnat/math/STK-INF3000/index-eng.html" target="_blank">STK-INF3000/4000 Selected Topics in Data Science</a>. The course provides insight into selected contemporary relevant topics within Data Science.</li>
14701472
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN4080/index.html" target="_blank">IN4080 Natural Language Processing</a>. Probabilistic and machine learning techniques applied to natural language processing.</li>
14711473
<p><li> <a href="https://www.uio.no/studier/emner/matnat/math/STK-IN4300/index-eng.html" target="_blank">STK-IN4300 &#8211; Statistical learning methods in Data Science</a>. An advanced introduction to statistical and machine learning. For students with a good mathematics and statistics background.</li>
1472-
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN-STK5000/index-eng.html" target="_blank">IN-STK5000 Adaptive Methods for Data-Based Decision Making</a>. Methods for adaptive collection and processing of data based on machine learning techniques.</li>
1473-
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN5400/" target="_blank">IN5400/INF5860 &#8211; Machine Learning for Image Analysis</a>. An introduction to deep learning with particular emphasis on applications within Image analysis, but useful for other application areas too.</li>
1474-
<p><li> <a href="https://www.uio.no/studier/emner/matnat/its/TEK5040/" target="_blank">TEK5040 &#8211; Dyp l&#230;ring for autonome systemer</a>. The course addresses advanced algorithms and architectures for deep learning with neural networks. The course provides an introduction to how deep-learning techniques can be used in the construction of key parts of advanced autonomous systems that exist in physical environments and cyber environments.</li>
1474+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN-STK5000/index-eng.html" target="_blank">IN-STK5000 Responsible Data Science</a>. Methods for adaptive collection and processing of data based on machine learning techniques.</li>
1475+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN4310/index.html" target="_blank">IN4310 &#8211; Machine Learning for Image Analysis</a>. An introduction to deep learning with particular emphasis on applications within Image analysis, but useful for other application areas too.</li>
1476+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN5310/index.html" target="_blank">IN5310 &#8211; Advanced Deep Learning for Image Analysis</a></li>
1477+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/ifi/IN5490/index.html" target="_blank">IN5490 &#8211; Advanced Topics in Artificial Intelligence for Intelligent Systems</a></li>
1478+
<p><li> <a href="https://www.uio.no/studier/emner/matnat/its/TEK5040/" target="_blank">TEK5040 &#8211; Deep learning for autonomous systems</a>. The course addresses advanced algorithms and architectures for deep learning with neural networks. The course provides an introduction to how deep-learning techniques can be used in the construction of key parts of advanced autonomous systems that exist in physical environments and cyber environments.</li>
14751479
</ol>
14761480
</section>
14771481

0 commit comments

Comments
 (0)