-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtes_specific_errors.py
105 lines (89 loc) · 4.09 KB
/
tes_specific_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from typing import List, Sequence, cast
import argparse, json
from transformers import BertForTokenClassification
from ddaugner.datas.aug import TheElderScrollsAugmenter
from ddaugner.datas.conll.conll import CoNLLDataset # type: ignore
from ddaugner.datas.datas import NERDataset
from ddaugner.predict import predict
from ddaugner.train import train_ner_model
from ddaugner.utils import NEREntity, entities_from_bio_tags, flattened
from ddaugner.datas.dekker import load_dekker_dataset
def train_and_predict(
train_dataset: NERDataset, dekker_dataset: NERDataset
) -> List[NEREntity]:
model = BertForTokenClassification.from_pretrained(
"bert-base-cased",
num_labels=train_dataset.tags_nb,
label2id=train_dataset.tag_to_id,
id2label={v: k for k, v in train_dataset.tag_to_id.items()},
)
model = train_ner_model(model, train_dataset, train_dataset, epochs_nb=2)
preds = predict(model, dekker_dataset)
preds = cast(List[List[str]], preds)
return entities_from_bio_tags(
flattened([s.tokens for s in dekker_dataset.sents]), flattened(preds)
)
def entities_names(entities: Sequence[NEREntity]) -> List[str]:
return [" ".join(e.tokens) for e in entities]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-rn", "--repeats-nb", type=int, default=3)
parser.add_argument("-cs", "--context-size", type=int, default=0)
parser.add_argument("-of", "--output-file", type=str)
parser.add_argument("-fst", "--fix-sent-tokenization", action="store_true")
args = parser.parse_args()
assert args.repeats_nb >= 1
assert not args.output_file is None
dekker_dataset = load_dekker_dataset(
"./ner",
book_group="fantasy",
context_size=args.context_size,
fix_sent_tokenization=args.fix_sent_tokenization,
)
dekker_tokens = flattened([s.tokens for s in dekker_dataset.sents])
gold_tags = flattened([s.tags for s in dekker_dataset.sents])
gold_entities = set(entities_from_bio_tags(dekker_tokens, gold_tags))
# noaug training
noaug_train_dataset = CoNLLDataset.train_dataset(
{}, {}, context_size=args.context_size
)
noaug_pred_entities = set(train_and_predict(noaug_train_dataset, dekker_dataset))
for i in range(args.repeats_nb - 1):
pred_entities = train_and_predict(noaug_train_dataset, dekker_dataset)
noaug_pred_entities = noaug_pred_entities.intersection(set(pred_entities))
# tes aug training
tes_train_dataset = CoNLLDataset.train_dataset(
{"PER": [TheElderScrollsAugmenter()]}, {"PER": [0.5]}, 0, "standard"
)
tes_pred_entities = set(train_and_predict(tes_train_dataset, dekker_dataset))
for i in range(args.repeats_nb - 1):
pred_entities = train_and_predict(tes_train_dataset, dekker_dataset)
tes_pred_entities = tes_pred_entities.intersection(pred_entities)
# noaug precision errors
noaug_per_pred_entities = set([e for e in noaug_pred_entities if e.tag == "PER"])
noaug_precision_errors = noaug_per_pred_entities - gold_entities
# compute precision errors
tes_per_pred_entities = set([e for e in tes_pred_entities if e.tag == "PER"])
tes_precision_errors = tes_per_pred_entities - gold_entities
def entity_context(entity: NEREntity) -> List[str]:
sent_start_idx = 0
for sent in dekker_dataset.sents:
sent_end_idx = sent_start_idx + len(sent) - 1
if entity.start_idx >= sent_start_idx and entity.end_idx <= sent_end_idx:
return (
flattened([c.tokens for c in sent.left_context])
+ sent.tokens
+ flattened([c.tokens for c in sent.right_context])
)
sent_start_idx += len(sent)
raise ValueError
tes_error_ctx = [
(entity, entity_context(entity))
for entity in tes_precision_errors - noaug_precision_errors
]
out = [
{"entity": entity.tokens, "context": context}
for entity, context in tes_error_ctx
]
with open(args.output_file, "w") as f:
json.dump(out, f, indent=4)