-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
104 lines (92 loc) · 3.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
from datasets import load_dataset
from tqdm import tqdm
import re
import pandas as pd
from helper_functions import (
get_fewshot_examples,
convert_mmlu_data,
configure_model,
set_seed,
discard_text_after_answer,
make_inference,
)
"""Top level main function to run LLMs."""
"""
* Copyright 2024 Comcast Cable Communications Management, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
"""
parser = argparse.ArgumentParser(description="")
parser.add_argument("--task", type=str)
parser.add_argument("--model", type=str)
parser.add_argument("--num_fewshot", type=int)
parser.add_argument("--experiment_run", type=int)
args = parser.parse_args()
set_seed(123)
if "bbh" in args.task:
subset_name = args.task.split("_")
subset_name = "_".join(subset_name[1:])
test_data = load_dataset("lukaemon/bbh", name=subset_name, split="test")
elif "mmlu" in args.task:
subset_name = args.task.split("_")
subset_name = "_".join(subset_name[1:])
test_data = load_dataset("cais/mmlu", name=subset_name, split="test")
test_data = convert_mmlu_data(test_data)
else:
raise Exception(f"{args.task} is not supported")
if "llama-3-70b" == args.model:
model_name = "databricks-meta-llama-3-70b-instruct"
elif "mixtral-8x7b-instruct" == args.model:
model_name = "databricks-mixtral-8x7b-instruct"
elif "finetuned-3.5" == args.model:
model_name = "mmlu"
else:
model_name = args.model
model_client = configure_model(args.model)
few_shot_data = get_fewshot_examples(subset_name)
tokenizer = None
raw_responses = []
predictions = []
ground_truths = []
need_check = False
raw_inputs = []
for example in tqdm(test_data):
few_shot_text = ""
for ex in few_shot_data["samples"][: args.num_fewshot]:
few_shot_text = few_shot_text + ex["input"] + f"A:{ex['target']}\n"
message = f"{few_shot_text} {example['input']} A:"
raw_response = make_inference(model_client, model_name, message)
raw_inputs.append(message)
ground_truths.append(example["target"])
raw_responses.append(raw_response)
try:
pred = re.findall("(?<=answer is )(\S*)", raw_response)[0]
pred = discard_text_after_answer(pred)
except:
try:
pred = re.findall("(?<= is )(\([ABCDabcd]\))(?=.)", raw_response)[0]
pred = discard_text_after_answer(pred)
except:
need_check = True
print("CHECK the Raw responses!!!")
pred = raw_response
predictions.append(pred)
pd.DataFrame(
{
"pred": predictions,
"gt": ground_truths,
"raw_response": raw_responses,
"raw_input": raw_inputs,
}
).to_csv(f"{args.model}_{args.task}_{args.experiment_seed}.csv")