-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsound_similarity_inference.py
130 lines (117 loc) · 5.81 KB
/
sound_similarity_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import h5py
import subprocess
import knn_cnn_features
import sys
sys.path.append("audioset/")
import vggish_inference
def extract_audio_from_video(vid_path):
vid_name = vid_path.split('/')[-1].split('.')[0]
p = subprocess.Popen("ffmpeg -loglevel panic -i "+vid_path+" -f wav -vn data/audio/"+vid_name+".wav",
stdout=subprocess.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
def embedding_from_audio(wav_path, delete=True):
_, audio_embedding = vggish_inference.main(wav_file=wav_path)
if delete:
p = subprocess.Popen("rm -r "+wav_path,
stdout=subprocess.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
return audio_embedding
def load_sound_data(second_level=False,length=10):
audioset_h5f = h5py.File('audioset_balanced_features_vggish.h5', 'r')
audio_embeddings = np.array(audioset_h5f['audio_embeddings'],dtype='float32')
audioset_h5f.close()
true_labels = np.load('audioset_balanced_labels.npy')
feature_labels = np.array([flab[0] for flab in true_labels])
if second_level:
merged_audio_embeddings = audio_embeddings.reshape(audio_embeddings.shape[:-3] + (-1,128))
embedding_labels = np.array([i for i in feature_labels for _ in range(length)])
true_labels = np.array([i for i in true_labels for _ in range(length)])
return merged_audio_embeddings, embedding_labels, true_labels
else:
reshaped_audio_embeddings = audio_embeddings.reshape(audio_embeddings.shape[:-2] + (-1,))
return reshaped_audio_embeddings, feature_labels, true_labels
def similar_sound_vids(vid_path, k=100):
extract_audio_from_video(vid_path)
audio_embedding = embedding_from_audio('data/audio/'+vid_path.split('/')[-1].split('.')[0]+'.wav')
audioset_bal_embeddings, feature_labels, _ = load_sound_data()
feature_indices = knn_cnn_features.run_knn_features(audioset_bal_embeddings,\
test_vectors=audio_embedding,k=k)
return feature_labels[feature_indices]
def similar_sound_audio(wav_path, k=100):
audio_embedding = embedding_from_audio(wav_path)
audioset_bal_embeddings, feature_labels, _ = load_sound_data()
feature_indices = knn_cnn_features.run_knn_features(audioset_bal_embeddings,\
test_vectors=audio_embedding,k=k)
return feature_labels[feature_indices]
def similar_sound_embedding(audio_embedding, k=100):
audioset_bal_embeddings, feature_labels, _ = load_sound_data()
feature_indices = knn_cnn_features.run_knn_features(audioset_bal_embeddings,\
test_vectors=audio_embedding,k=k)
return feature_labels[feature_indices]
def label_from_index(similar_indices, true_indices=None):
import pandas as pd
# true_labels = np.load('audioset_balanced_labels.npy')
df = pd.read_csv('audioset/class_labels_indices.csv')
similar_labels = df['display_name'].values[similar_indices]
if type(true_indices) is np.ndarray:
true_labels = df['display_name'].values[true_indices]
return similar_labels, true_labels
else:
return similar_labels
def load_sound_data_ucf():
feature_file = h5py.File('audio_sec_UCF_vggish.h5', 'r')
feature_labels = np.array([fl.decode() for fl in feature_file['feature_labels']])
feature_vectors = np.array(feature_file['feature_vectors'])
feature_file.close()
return feature_vectors, feature_labels
def get_ordered_unique(listed,dist):
seen = set()
seen_add = seen.add
ordered_listed = [x for x in listed if not (x in seen or seen_add(x))]
seen = set()
seen_add = seen.add
ordered_dist = [x for i, x in enumerate(dist) if not (listed[i] in seen or seen_add(listed[i]))]
return ordered_listed, ordered_dist
def multi_sec_inference(distances, feature_indices):
length = len(feature_indices)
ordered_listed = []
ordered_distances = []
for i in range(length):
ol, od = get_ordered_unique(feature_indices[i],distances[i])
ordered_listed = ordered_listed + ol
ordered_distances = ordered_distances + od
# print(get_ordered_unique(ordered_listed, ordered_distances))
sorted_listed = [x for _,x in sorted(zip(ordered_distances, ordered_listed))]
uniq_sorted_listed, uniq_sorted_dist = get_ordered_unique(sorted_listed, sorted(ordered_distances))
return uniq_sorted_dist, [usl.split('/')[-1].split('.')[0] for usl in uniq_sorted_listed]
def similar_sound_ucf_video(vid_path, k=10, dist=False, verbose=False, newVid=False):
if newVid:
try:
extract_audio_from_video(vid_path)
except:
print("No audio channel found")
audio_embedding = embedding_from_audio('data/audio/'+vid_path.split('/')[-1].split('.')[0]+'.wav')
else:
audio_embedding = feature_vectors[np.where(feature_labels=="data/audio/"+vid_path.split('/')[-1].split(".")[-2]+".npy")]
distances, feature_indices = knn_cnn_features.run_knn_features(feature_vectors,\
test_vectors=feature_vectors[:10],k=k, dist=True, flat=True)
# adjust for silence
distances = [d+1000 for d in distances]
del audio_embedding
merged_similarities = multi_sec_inference(distances,feature_labels[feature_indices])
if verbose:
print(merged_similarities[1][:k])
if dist:
return merged_similarities[0][:k], list(map(str,merged_similarities[1][:k]))
else:
return merged_similarities[1][:k]
feature_vectors, feature_labels = load_sound_data_ucf()
# import time
# start = time.time()
# for i in range(5):
# similar_sound_ucf_video('data/UCF101/v_ApplyEyeMakeup_g01_c01.mp4', verbose=True, newVid=True)
# print((time.time()-start)/5)
# 2.0657553434371948 seconds (0.5 s if not new video)