-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkmeans_gpu.py
94 lines (75 loc) · 2.59 KB
/
kmeans_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#! /usr/bin/env python3
import numpy as np
import time
import faiss
import sys
import imageio
from skimage import transform
from collections import Counter
import cv2
# Get command-line arguments
# k = int(sys.argv[1])
# n = 10**6
# d = 200
# x = np.random.random((n, d)).astype('float32')
def load_image(img_path, resize=True):
tmp_img = imageio.imread(img_path)
if resize:
return transform.resize(image=tmp_img,output_shape=(200,200),anti_aliasing=True, mode='constant')
return tmp_img
# x = x.reshape(x.shape[0], -1).astype('float32')
def train_kmeans(x, k):
"Runs kmeans on one or several GPUs"
d = x.shape[1]
clus = faiss.Clustering(d, k)
clus.verbose = False
clus.niter = 20
clus.max_points_per_centroid = 10000000
res = faiss.StandardGpuResources()
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = 0
index = faiss.GpuIndexFlatL2(res, d, cfg)
# perform the training
clus.train(x, index)
centroids = faiss.vector_float_to_array(clus.centroids)
obj = faiss.vector_float_to_array(clus.obj)
# print("final objective: %.4g" % obj[-1])
return centroids.reshape(k, d)
def run(image_path,clusters=10,c_size=True):
img_x = load_image(image_path)
img_x = img_x.reshape((img_x.shape[0] * img_x.shape[1], 3)).astype('float32')
centroids_ = train_kmeans(img_x, clusters)
if c_size:
labels = compute_cluster_assignment(centroids_,img_x)
# hist = hist.astype("float")
# (hist, _) = np.histogram(labels, bins=clusters)
# hist /= hist.sum()
centroids_ = (centroids_*255).astype("uint8")
counts = Counter(labels).most_common()
total = sum(n for _, n in counts)
centroids_sizes = [(val/total, centroids_[k]) for k,val in counts]
bar_img = bar_colors(centroids_sizes)
return centroids_, bar_img
else:
return (centroids_*255).astype("uint8")
def bar_colors(centroids_sizes):
bar = np.zeros((1, 100, 3), dtype = "uint8")
startX = 0
for (percent, color) in centroids_sizes:
endX = startX + (percent * 100)
cv2.rectangle(bar, (int(startX), 0), (int(endX), 50),
color.astype("uint8").tolist(), -1)
startX = endX
return bar
def compute_cluster_assignment(centroids, x):
assert centroids is not None, "should train before assigning"
d = centroids.shape[1]
res = faiss.StandardGpuResources()
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = 0
index = faiss.GpuIndexFlatL2(res, d, cfg)
index.add(centroids)
distances, labels = index.search(x, 1)
return labels.ravel()