-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathextract_features.py
29 lines (24 loc) · 1.04 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torch.autograd import Variable
from PIL import Image
scaler = transforms.Resize((224, 224))
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
to_tensor = transforms.ToTensor()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_res50 = models.resnet50(pretrained=True).cuda()
for param in model_res50.parameters():
param.requires_grad = False
# model_res50.classifier = model_res50._modules.get('avgpool')
# model_res50.classifier = res50_classifier
res50_classifier = nn.Sequential(*list(model_res50.children())[:-1])
def get_vector_resnet50(img_path):
img = Image.open(img_path)
t_img = Variable(normalize(to_tensor(scaler(img))).unsqueeze(0)).cuda()
output = res50_classifier(t_img)
feature_vector = output.data.cpu()
return feature_vector.numpy().flatten()
# print(get_vector_resnet50('data/images/golden1.jpg')