프림 알고리즘
-
개념: 시작 정점을 선택한 후, 정점에 인접한 간선중 최소 간선으로 연결된 정점을 선택하고, 해당 정점에서 다시 최소 간선으로 연결된 정점을 선택하는 방식으로 최소 신장 트리를 확장해가는 방식
-
특징
- 탐욕 알고리즘을 기초로 함
- 특정 정점에서 시작하여 그 중에서 가중치가 낮은 간선을 선택하여 노드 연결
- 간선의 가중치를 간선리스트에 저장 후 작은 것을 선택해서 씀.
-
순서
- 모든 간선 정보를 저장 (adjacent_edges)
- 임의의 정점을 선택, '연결된 노드 집합'에 삽입
- 선택된 정점에 연결된 간선들을 간선 리스트에 삽입
- 간선 리스트에서 최소 가중치를 가지는 간선부터 추출해서 사이클 체크하여 사이클 안되면 선택
- 추출한 간선은 간선 리스트에서 제거
- 간선 리스트에 더 이상의 간선이 없을 때까지 3-4번을 반복
-
코드
# 간선의 가중치와 노드 방향 넣기
myedges = [
(7, 'A', 'B'), (5, 'A', 'D'),
(8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E'),
(5, 'C', 'E'),
(7, 'D', 'E'), (6, 'D', 'F'),
(8, 'E', 'F'), (9, 'E', 'G'),
(11, 'F', 'G')
]
from collections import defaultdict
from heapq import *
def prim(start_node, edges):
mst = list()
adjacent_edges = defaultdict(list)
for weight, n1, n2 in edges:
adjacent_edges[n1].append((weight, n1, n2))
adjacent_edges[n2].append((weight, n2, n1))
connected_nodes = set(start_node)
candidate_edge_list = adjacent_edges[start_node]
heapify(candidate_edge_list)
while candidate_edge_list:
weight, n1, n2 = heappop(candidate_edge_list)
if n2 not in connected_nodes:
connected_nodes.add(n2)
mst.append((weight, n1, n2))
for edge in adjacent_edges[n2]:
if edge[2] not in connected_nodes:
heappush(candidate_edge_list, edge)
return mst
- 시간복잡도: O(E logE) _ 최소 힙 구조 사용, 모든 간선에 대해서 반복(E = Edge 간선)
간선이 아닌 노드 중심의 알고리즘
- 순서
- 초기화 - 정점:key 구조를 만들어놓고, 특정 정점의 key값은 0, 이외의 정점들의 key값은 무한대로 놓음. 모든 정점:key 값은 우선순위 큐에 넣음
- 가장 key값이 적은 정점:key를 추출한 후(pop 하므로 해당 정점:key 정보는 우선순위 큐에서 삭제됨), (extract min 로직이라고 부름)
- 해당 정점의 인접한 정점들에 대해 key 값과 연결된 가중치 값을 비교하여 key값이 작으면 해당 정점:key 값을 갱신
from heapdict import heapdict
def prim(graph, start):
mst, keys, pi, total_weight = list(), heapdict(), dict(), 0
for node in graph.keys():
keys[node] = float('inf')
pi[node] = None
keys[start], pi[start] = 0, start
while keys:
current_node, current_key = keys.popitem()
mst.append([pi[current_node], current_node, current_key])
total_weight += current_key
for adjacent, weight in mygraph[current_node].items():
if adjacent in keys and weight < keys[adjacent]:
keys[adjacent] = weight
pi[adjacent] = current_node
return mst, total_weight
mygraph = {
'A': {'B': 7, 'D': 5},
'B': {'A': 7, 'D': 9, 'C': 8, 'E': 7},
'C': {'B': 8, 'E': 5},
'D': {'A': 5, 'B': 9, 'E': 7, 'F': 6},
'E': {'B': 7, 'C': 5, 'D': 7, 'F': 8, 'G': 9},
'F': {'D': 6, 'E': 8, 'G': 11},
'G': {'E': 9, 'F': 11}
}
mst, total_weight = prim(mygraph, 'A')
print ('MST:', mst)
print ('Total Weight:', total_weight)
- 시간복잡도: O(E logV) _
- O(V): 최초 key생성
- O(VlogV): while문과 popitem
- O(ElogV): while문 안의 for문 + key값의 변경 마다 heap구조 변경
- O(V) + O(VlogV) + O(ElogV)인데 무조건 간선이 정점보다는 많으므로(E>V)이므로