diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml index a2dbdba2..54670227 100644 --- a/.buildkite/pipeline.yml +++ b/.buildkite/pipeline.yml @@ -2,7 +2,6 @@ agents: queue: new-central slurm_mem: 8G modules: climacommon/2024_05_27 - partition: expansion env: JULIA_LOAD_PATH: "${JULIA_LOAD_PATH}:${BUILDKITE_BUILD_CHECKOUT_PATH}/.buildkite" @@ -10,6 +9,7 @@ env: JULIA_NVTX_CALLBACKS: gc OMPI_MCA_opal_warn_on_missing_libcuda: 0 JULIA_MAX_NUM_PRECOMPILE_FILES: 100 + # JULIA_DEPOT_PATH: "${BUILDKITE_BUILD_PATH}/${BUILDKITE_PIPELINE_SLUG}/depot/default" steps: - label: "init cpu env" @@ -24,28 +24,13 @@ steps: - echo "--- Instantiate perf" - "julia --project=perf -e 'using Pkg; Pkg.instantiate(;verbose=true); Pkg.precompile(;strict=true)'" + - echo "--- Instantiate docs" + - "julia --project=docs -e 'using Pkg; Pkg.instantiate(;verbose=true); Pkg.precompile(;strict=true)'" + - echo "--- Package status" - "julia --project -e 'using Pkg; Pkg.status()'" - - - # - label: "init gpu env" - # key: "init_gpu_env" - # command: - # - echo "--- Configure MPI" - # - julia -e 'using Pkg; Pkg.add("MPIPreferences"); using MPIPreferences; use_system_binary()' - - # - echo "--- Instantiate project" - # - "julia --project -e 'using Pkg; Pkg.instantiate(;verbose=true); Pkg.precompile(;strict=true)'" - - # - echo "--- Instantiate test" - # - "julia --project=test -e 'using Pkg; Pkg.develop(path=\".\"); Pkg.instantiate(;verbose=true); Pkg.precompile()'" - - # - echo "--- Initialize CUDA runtime" - # - "julia --project -e 'using CUDA; CUDA.precompile_runtime(); CUDA.versioninfo()'" - - # - echo "--- Package status" - # - "julia --project -e 'using Pkg; Pkg.status()'" - # slurm_gres: "gpu:1" + agents: + slurm_gpus: 1 - wait @@ -53,11 +38,24 @@ steps: command: "julia --project=test --check-bounds=yes test/runtests.jl" artifact_paths: "output/*" - # - label: "GPU tests" - # command: - # - "julia --project=test --check-bounds=yes test/runtests.jl CuArray" - # artifact_paths: "output/*" - # slurm_gres: "gpu:1" + - label: "Deformational flow limiter test (CPU)" + command: + - "julia --project=docs --check-bounds=yes docs/src/test_deformational_flow.jl CPU" + artifact_paths: "output_CPU/*" + + - label: "Deformational flow limiter test (GPU)" + command: + - "julia --project=docs docs/src/test_deformational_flow.jl GPU" + artifact_paths: "output_GPU/*" + agents: + slurm_gpus: 1 + + - label: "Deformational flow limiter test (GPU w/ check-bounds)" + command: + - "julia --project=docs --check-bounds=yes docs/src/test_deformational_flow.jl GPU_checkbounds" + artifact_paths: "output_GPU_checkbounds/*" + agents: + slurm_gpus: 1 - label: "Flame graph (1D diffusion)" command: "julia --project=perf perf/flame.jl --job_id diffusion_1D" diff --git a/Project.toml b/Project.toml index d375e16c..32806a79 100644 --- a/Project.toml +++ b/Project.toml @@ -16,6 +16,7 @@ LinearOperators = "5c8ed15e-5a4c-59e4-a42b-c7e8811fb125" NVTX = "5da4648a-3479-48b8-97b9-01cb529c0a1f" SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" +UnrolledUtilities = "0fe1646c-419e-43be-ac14-22321958931b" [weakdeps] BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" @@ -45,4 +46,5 @@ NVTX = "0.3" SciMLBase = "1, 2" StaticArrays = "1" StatsBase = "0.33, 0.34" +UnrolledUtilities = "0.1" julia = "1.8" diff --git a/docs/Manifest.toml b/docs/Manifest.toml index 039c092f..8dff99c0 100644 --- a/docs/Manifest.toml +++ b/docs/Manifest.toml @@ -249,7 +249,7 @@ uuid = "cf7c7e5a-b407-4c48-9047-11a94a308626" version = "0.2.10" [[deps.ClimaTimeSteppers]] -deps = ["ClimaComms", "Colors", "DataStructures", "DiffEqBase", "DiffEqCallbacks", "KernelAbstractions", "Krylov", "LinearAlgebra", "LinearOperators", "NVTX", "SciMLBase", "StaticArrays"] +deps = ["ClimaComms", "Colors", "DataStructures", "DiffEqBase", "DiffEqCallbacks", "KernelAbstractions", "Krylov", "LinearAlgebra", "LinearOperators", "NVTX", "SciMLBase", "StaticArrays", "UnrolledUtilities"] path = ".." uuid = "595c0a79-7f3d-439a-bc5a-b232dc3bde79" version = "0.7.31" @@ -2123,6 +2123,11 @@ git-tree-sha1 = "6cc9d682755680e0f0be87c56392b7651efc2c7b" uuid = "9602ed7d-8fef-5bc8-8597-8f21381861e8" version = "0.1.5" +[[deps.UnrolledUtilities]] +git-tree-sha1 = "b73f7a7c25a2618c5052c80ed32b07e471cc6cb0" +uuid = "0fe1646c-419e-43be-ac14-22321958931b" +version = "0.1.2" + [[deps.UnsafeAtomics]] git-tree-sha1 = "6331ac3440856ea1988316b46045303bef658278" uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" diff --git a/docs/src/api/ode_solvers.md b/docs/src/api/ode_solvers.md index c19659ff..447d4f24 100644 --- a/docs/src/api/ode_solvers.md +++ b/docs/src/api/ode_solvers.md @@ -4,19 +4,39 @@ CurrentModule = ClimaTimeSteppers ``` -## Interface +## Tableau Interface ```@docs -AbstractAlgorithmConstraint -Unconstrained -SSP -IMEXTableau -IMEXAlgorithm -ExplicitTableau -ExplicitAlgorithm +ClimaTimeSteppers.RKTableau +ClimaTimeSteppers.ButcherTableau +ClimaTimeSteppers.ShuOsherTableau +ClimaTimeSteppers.PaddedTableau +ClimaTimeSteppers.ARKTableau +ClimaTimeSteppers.is_ERK +ClimaTimeSteppers.is_DIRK ``` -## IMEX Algorithm Names +## Algorithm Interface + +```@docs +AbstractAlgorithmName +ClimaTimeSteppers.RKAlgorithmName +ClimaTimeSteppers.SSPRKAlgorithmName +ClimaTimeSteppers.ARKAlgorithmName +ClimaTimeSteppers.IMEXSSPRKAlgorithmName +RKAlgorithm +ARKAlgorithm +``` + +## RK Algorithm Names + +```@docs +SSP22Heuns +SSP33ShuOsher +RK4 +``` + +## ARK Algorithm Names ```@docs ARS111 @@ -54,14 +74,6 @@ ARK548L2SA2 SSPKnoth ``` -## Explicit Algorithm Names - -```@docs -SSP22Heuns -SSP33ShuOsher -RK4 -``` - ## Old LSRK Interface ```@docs diff --git a/docs/src/dev/report_gen.jl b/docs/src/dev/report_gen.jl index bfcef9be..02cb9980 100644 --- a/docs/src/dev/report_gen.jl +++ b/docs/src/dev/report_gen.jl @@ -8,66 +8,55 @@ using InteractiveUtils: subtypes ENV["GKSwstype"] = "nul" # avoid displaying plots -include(joinpath(@__DIR__, "..", "plotting_utils.jl")) include(joinpath(pkgdir(ClimaTimeSteppers), "test", "problems.jl")) +include(joinpath(@__DIR__, "..", "plotting_utils.jl")) all_subtypes(::Type{T}) where {T} = isabstracttype(T) ? vcat(all_subtypes.(subtypes(T))...) : [T] let # Convergence title = "All Algorithms" algorithm_names = map(T -> T(), all_subtypes(ClimaTimeSteppers.AbstractAlgorithmName)) - algorithm_names = filter(name -> !(name isa ARK437L2SA1 || name isa ARK548L2SA2), algorithm_names) # too high order + # algorithm_names = filter(name -> name isa ARS343, algorithm_names) + algorithm_names = filter(name -> name isa ARKSSPKnoth, algorithm_names) - # NOTE: Some imperfections in the convergence order for SSPKnoth are to be - # expected because we are not using the exact Jacobian + verify_convergence(title, algorithm_names, ark_analytic_nonlin_test_cts(Float64), 300) + # verify_convergence(title, algorithm_names, ark_analytic_sys_test_cts(Float64), 350) + # verify_convergence(title, algorithm_names, onewaycouple_mri_test_cts(Float64), 2000) + # verify_convergence( + # title, + # algorithm_names, + # ark_analytic_test_cts(Float64), + # 16650; + # num_test_points = 6, + # num_steps_scaling_factor = 23, + # super_convergence = (ARS121(),), + # ) - verify_convergence(title, algorithm_names, ark_analytic_nonlin_test_cts(Float64), 200) - verify_convergence(title, algorithm_names, ark_analytic_sys_test_cts(Float64), 400) - verify_convergence(title, algorithm_names, ark_analytic_test_cts(Float64), 40000; super_convergence = (ARS121(),)) - verify_convergence(title, algorithm_names, onewaycouple_mri_test_cts(Float64), 10000; num_steps_scaling_factor = 5) - verify_convergence( - title, - algorithm_names, - climacore_1Dheat_test_cts(Float64), - 400; - num_steps_scaling_factor = 4, - numerical_reference_algorithm_name = ARS343(), - ) - rosenbrock_schems = filter(name -> name isa ClimaTimeSteppers.RosenbrockAlgorithmName, algorithm_names) - verify_convergence(title, rosenbrock_schems, climacore_1Dheat_test_implicit_cts(Float64), 400) - verify_convergence( - title, - algorithm_names, - climacore_2Dheat_test_cts(Float64), - 600; - num_steps_scaling_factor = 4, - numerical_reference_algorithm_name = ARS343(), - ) -end + # verify_convergence( + # title, + # algorithm_names, + # climacore_1Dheat_test_cts(Float64), + # 40; + # numerical_reference_algorithm_name = ARK548L2SA2(), + # numerical_reference_num_steps = 500000, + # ) + # verify_convergence( + # title, + # algorithm_names, + # climacore_2Dheat_test_cts(Float64), + # 40; + # numerical_reference_algorithm_name = ARK548L2SA2(), + # numerical_reference_num_steps = 500000, + # ) -let # Unconstrained vs SSP results without limiters - algorithm_names = map(T -> T(), all_subtypes(ClimaTimeSteppers.IMEXSSPRKAlgorithmName)) - for (test_case, num_steps) in ( - (ark_analytic_nonlin_test_cts(Float64), 200), - (ark_analytic_sys_test_cts(Float64), 400), - (ark_analytic_test_cts(Float64), 40000), - (onewaycouple_mri_test_cts(Float64), 10000), - (climacore_1Dheat_test_cts(Float64), 200), - (climacore_2Dheat_test_cts(Float64), 200), - ) - prob = test_case.split_prob - dt = test_case.t_end / num_steps - newtons_method = NewtonsMethod(; max_iters = test_case.linear_implicit ? 1 : 2) - for algorithm_name in algorithm_names - algorithm = IMEXAlgorithm(algorithm_name, newtons_method) - reference_algorithm = IMEXAlgorithm(algorithm_name, newtons_method, Unconstrained()) - solution = solve(deepcopy(prob), algorithm; dt).u[end] - reference_solution = solve(deepcopy(prob), reference_algorithm; dt).u[end] - if norm(solution .- reference_solution) / norm(reference_solution) > 30 * eps(Float64) - alg_str = string(nameof(typeof(algorithm_name))) - @warn "Unconstrained and SSP versions of $alg_str \ - give different results for $(test_case.test_name)" - end - end - end + # verify_convergence( + # title, + # algorithm_names, + # climacore_1Dheat_test_implicit_cts(Float64), + # 60; + # num_test_points = 4, + # num_steps_scaling_factor = 8, + # numerical_reference_algorithm_name = ARK548L2SA2(), + # numerical_reference_num_steps = 500000, + # ) end diff --git a/docs/src/dev/report_gen.md b/docs/src/dev/report_gen.md index 73c9a9af..74b5b37a 100644 --- a/docs/src/dev/report_gen.md +++ b/docs/src/dev/report_gen.md @@ -1,6 +1,6 @@ # Verifying Correctness -The `IMEXAlgorithm` supports problems that specify any combination of the following: an implicit tendency `T_imp!`, an explicit tendency `T_exp!`, a limited tendency `T_lim!`, a function `dss!` that applies a direct stiffness summation, and a function `lim!` that applies a monotonicity-preserving limiter. +The `ARKAlgorithm` supports problems that specify any combination of the following: an implicit tendency `T_imp!`, an explicit tendency `T_exp!`, a limited tendency `T_lim!`, a function `dss!` that applies a direct stiffness summation, and a function `lim!` that applies a monotonicity-preserving limiter. ## Convergence without a Limiter @@ -12,7 +12,9 @@ The test cases we use for this analysis are: - `ark_analytic`, which uses a nonlinear `T_exp!` and a linear `T_imp!` - `ark_analytic_sys` and `ark_onewaycouple_mri`, which use a linear `T_imp!` - `ark_analytic_nonlin`, which uses a nonlinear `T_imp!` - - `1d_heat_equation` and `2d_heat_equation`, which use a nonlinear `T_exp!` and `dss!`, where the spatial discretization is implemented using `ClimaCore` + - `1d_heat_equation`, which uses a nonlinear `T_exp!` implemented with `ClimaCore` + - `2d_heat_equation`, which uses a nonlinear `T_exp!` and `dss!` implemented with `ClimaCore` + - `1d_heat_equation_implicit`, which uses a nonlinear `T_imp!` implemented with `ClimaCore` ```@example include("report_gen.jl") @@ -23,6 +25,7 @@ include("report_gen.jl") ![](output/convergence_ark_analytic_nonlin_all_algorithms.png) ![](output/convergence_1d_heat_equation_all_algorithms.png) ![](output/convergence_2d_heat_equation_all_algorithms.png) + ![](output/convergence_1d_heat_equation_implicit_all_algorithms.png) ## Errors with a Limiter @@ -40,8 +43,8 @@ limiter_summary(Float64, [SSP333(), ARS343()], horizontal_deformational_flow_tes ``` Plots of the tracer specific humidities that were used to compute this table are shown below. - ![](output/limiter_summary_SSP333.png) - ![](output/limiter_summary_ARS343.png) + ![](output/horizontal_deformational_flow_limiter_summary_SSP333.png) + ![](output/horizontal_deformational_flow_limiter_summary_ARS343.png) ## References diff --git a/docs/src/plotting_utils.jl b/docs/src/plotting_utils.jl index ccbc5dd7..9c0805b8 100644 --- a/docs/src/plotting_utils.jl +++ b/docs/src/plotting_utils.jl @@ -15,7 +15,7 @@ function (assuming that the algorithm converges). function predicted_convergence_order(algorithm_name::AbstractAlgorithmName, ode_function::AbstractClimaODEFunction) (imp_order, exp_order, combined_order) = imex_convergence_orders(algorithm_name) has_imp = !isnothing(ode_function.T_imp!) - has_exp = CTS.has_T_exp(ode_function) + has_exp = !(isnothing(ode_function.T_exp!) && isnothing(ode_function.T_exp_T_lim!)) has_imp && !has_exp && return imp_order !has_imp && has_exp && return exp_order has_imp && has_exp && return combined_order @@ -59,8 +59,10 @@ imex_convergence_orders(::ARK548L2SA2) = (5, 5, 5) imex_convergence_orders(::SSP22Heuns) = (2, 2, 2) imex_convergence_orders(::SSP33ShuOsher) = (3, 3, 3) imex_convergence_orders(::RK4) = (4, 4, 4) -# SSPKnoth is not really an IMEX method -imex_convergence_orders(::SSPKnoth) = (2, 2, 2) +imex_convergence_orders(::OldSSPKnoth) = (2, 3, 2) +imex_convergence_orders(::ARKSSPKnoth) = (2, 3, 2) +# SSPKnoth is a fully implicit method, but it loses an order of convergence +# when using an implicit tendency because it only performs one Newton iteration. # Compute a confidence interval for the convergence order, returning the # estimated convergence order and its uncertainty. @@ -93,42 +95,39 @@ function convergence_order(dts, errs, confidence) return order, order_uncertainty end -function make_saving_callback(cb, u, t, integrator) - DECB = CTS.DiffEqCallbacks - savevalType = typeof(cb(u, t, integrator)) - return DECB.SavingCallback(cb, DECB.SavedValues(typeof(t), savevalType)) -end - function verify_convergence( title, algorithm_names, test_case, num_steps; + num_samples = 9, + num_test_points = 5, num_steps_scaling_factor = 10, order_confidence_percent = 99, super_convergence = (), numerical_reference_algorithm_name = nothing, - numerical_reference_num_steps = num_steps_scaling_factor^3 * num_steps, + numerical_reference_num_steps = nothing, full_history_algorithm_name = nothing, average_function = array -> norm(array) / sqrt(length(array)), average_function_str = "RMS", only_endpoints = false, - verbose = false, + verbose = true, ) (; test_name, t_end, linear_implicit, analytic_sol) = test_case prob = test_case.split_prob FT = typeof(t_end) default_dt = t_end / num_steps - algorithm(algorithm_name::ClimaTimeSteppers.ERKAlgorithmName) = ExplicitAlgorithm(algorithm_name) - algorithm(algorithm_name::ClimaTimeSteppers.SSPKnoth) = - ClimaTimeSteppers.RosenbrockAlgorithm(ClimaTimeSteppers.tableau(ClimaTimeSteppers.SSPKnoth())) - algorithm(algorithm_name::ClimaTimeSteppers.IMEXARKAlgorithmName) = - IMEXAlgorithm(algorithm_name, NewtonsMethod(; max_iters = linear_implicit ? 1 : 2)) + algorithm(algorithm_name::ClimaTimeSteppers.ARKRosenbrockAlgorithmName) = + ARKAlgorithm(algorithm_name) + algorithm(algorithm_name::ClimaTimeSteppers.RKAlgorithmName) = RKAlgorithm(algorithm_name) + algorithm(algorithm_name::ClimaTimeSteppers.ARKAlgorithmName) = + ARKAlgorithm(algorithm_name, NewtonsMethod(; max_iters = linear_implicit ? 1 : 2)) ref_sol = if isnothing(numerical_reference_algorithm_name) analytic_sol else + @assert !isnothing(numerical_reference_num_steps) ref_alg = algorithm(numerical_reference_algorithm_name) ref_alg_str = string(nameof(typeof(numerical_reference_algorithm_name))) ref_dt = t_end / numerical_reference_num_steps @@ -137,8 +136,8 @@ function verify_convergence( solve(deepcopy(prob), ref_alg; dt = ref_dt, save_everystep = !only_endpoints) end - cur_avg_err(u, t, integrator) = average_function(abs.(u .- ref_sol(t))) - cur_avg_sol_and_err(u, t, integrator) = (average_function(u), average_function(abs.(u .- ref_sol(t)))) + cur_avg_err(u, t) = average_function(abs.(u .- ref_sol(t))) + cur_avg_sol_and_err(u, t) = [average_function(u), average_function(abs.(u .- ref_sol(t)))] float_str(x) = @sprintf "%.4f" x pow_str(x) = "10^{$(@sprintf "%.1f" log10(x))}" @@ -166,7 +165,7 @@ function verify_convergence( bottommargin = 30Plots.px, ) - plot1_dts = t_end ./ round.(Int, num_steps .* num_steps_scaling_factor .^ (-1:0.5:1)) + plot1_dts = t_end ./ round.(Int, num_steps .* num_steps_scaling_factor .^ range(-1, 1, num_samples)) plot1 = Plots.plot(; title = "Convergence Orders", xaxis = (latexstring("dt"), :log10), @@ -192,10 +191,8 @@ function verify_convergence( plot_kwargs..., ) - scb_cur_avg_err = make_saving_callback(cur_avg_err, prob.u0, t_end, nothing) - scb_cur_avg_sol_and_err = make_saving_callback(cur_avg_sol_and_err, prob.u0, t_end, nothing) - for algorithm_name in algorithm_names + @info algorithm_name alg = algorithm(algorithm_name) alg_str = string(nameof(typeof(algorithm_name))) predicted_order = predicted_convergence_order(algorithm_name, prob.f) @@ -203,18 +200,22 @@ function verify_convergence( verbose && @info "Running $test_name with $alg_str..." plot1_net_avg_errs = map(plot1_dts) do plot1_dt + # @show alg.tableau.imp cur_avg_errs = solve( deepcopy(prob), alg; dt = plot1_dt, save_everystep = !only_endpoints, - callback = scb_cur_avg_err, + save_func = cur_avg_err, + kwargshandle = DiffEqBase.KeywordArgSilent, ).u verbose && @info "RMS_error(dt = $plot1_dt) = $(average_function(cur_avg_errs))" return average_function(cur_avg_errs) end - order, order_uncertainty = convergence_order(plot1_dts, plot1_net_avg_errs, order_confidence_percent / 100) + test_indices = predicted_order < 4 ? ((num_samples - num_test_points + 1):num_samples) : (1:num_test_points) + order, order_uncertainty = + convergence_order(plot1_dts[test_indices], plot1_net_avg_errs[test_indices], order_confidence_percent / 100) order_str = "$(float_str(order)) \\pm $(float_str(order_uncertainty))" if algorithm_name in super_convergence predicted_order += 1 @@ -238,7 +239,8 @@ function verify_convergence( alg; dt = default_dt, save_everystep = !only_endpoints, - callback = scb_cur_avg_sol_and_err, + save_func = cur_avg_sol_and_err, + kwargshandle = DiffEqBase.KeywordArgSilent, ) plot2_ts = plot2_values.t plot2_cur_avg_sols = first.(plot2_values.u) @@ -278,7 +280,8 @@ function verify_convergence( history_alg; dt = default_dt, save_everystep = !only_endpoints, - callback = make_saving_callback((u, t, integrator) -> u .- ref_sol(t), prob.u0, t_end, nothing), + save_func = (u, t) -> u .- ref_sol(t), + kwargshandle = DiffEqBase.KeywordArgSilent, ) history_array = hcat(history_solve_results.u...) history_plot_title = "Errors for $history_alg_name with \$dt = $(pow_str(default_dt))\$" @@ -353,8 +356,17 @@ end # "Optimization-based limiters for the spectral element method" by Guba et al., # and also plots the values used to generate the table. function limiter_summary(::Type{FT}, algorithm_names, test_case_type, num_steps) where {FT} - to_title(name) = titlecase(replace(string(name), '_' => ' ')) + to_title(name) = replace(string(name), '_' => ' ') table_rows = [] + example_test_case = test_case_type(FT) + test_name = replace(lowercase(example_test_case.test_name), ' ' => '_') + tracer_names = propertynames(example_test_case.split_prob.u0.ρq) + n_tracers = length(tracer_names) + if length(ARGS) == 1 + mkpath("output_$(ARGS[1])") + else + mkpath("output") + end for algorithm_name in algorithm_names alg_str = string(nameof(typeof(algorithm_name))) plots = [] @@ -364,32 +376,37 @@ function limiter_summary(::Type{FT}, algorithm_names, test_case_type, num_steps) colorbar = false, guide = "", margin = 10Plots.px, + level = 4, # for the 3D test case ) for use_limiter in (false, true), use_hyperdiffusion in (false, true) test_case = test_case_type(FT; use_limiter, use_hyperdiffusion) prob = test_case.split_prob dt = test_case.t_end / num_steps algorithm = - algorithm_name isa ClimaTimeSteppers.IMEXARKAlgorithmName ? - IMEXAlgorithm(algorithm_name, NewtonsMethod()) : ExplicitAlgorithm(algorithm_name) - solution = solve(deepcopy(prob), algorithm; dt).u + algorithm_name isa ClimaTimeSteppers.ARKAlgorithmName ? ARKAlgorithm(algorithm_name, NewtonsMethod()) : + RKAlgorithm(algorithm_name) + solution = @time solve(deepcopy(prob), algorithm; dt).u initial_q = solution[1].ρq ./ solution[1].ρ final_q = solution[end].ρq ./ solution[end].ρ - names = propertynames(initial_q) if isempty(plots) - for name in names - push!(plots, Plots.plot(initial_q.:($name); plot_kwargs..., title = to_title(name))) + for name in tracer_names + initial_q_plot = Plots.plot(initial_q.:($name); plot_kwargs..., title = to_title(name)) + push!(plots, initial_q_plot) end end - for name in names - push!(plots, Plots.plot(final_q.:($name); plot_kwargs..., title = "")) + for name in tracer_names + final_q_plot = Plots.plot(final_q.:($name); plot_kwargs..., title = "") + push!(plots, final_q_plot) end - for name in names + for name in tracer_names ϕ₀ = initial_q.:($name) ϕ = final_q.:($name) Δϕ₀ = maximum(ϕ₀) - minimum(ϕ₀) + if Δϕ₀ == 0 + Δϕ₀ = 1 # Modify Δϕ₀ to avoid divisions by 0. + end ϕ_error = ϕ .- ϕ₀ table_row = [ alg_str;; @@ -416,13 +433,13 @@ function limiter_summary(::Type{FT}, algorithm_names, test_case_type, num_steps) plot = Plots.plot( plots..., colorbar_plot; - layout = (Plots.@layout [Plots.grid(5, 3) a{0.1w}]), + layout = (Plots.@layout [Plots.grid(5, n_tracers) a{0.1w}]), plot_title = "Tracer specific humidity for $alg_str (Initial, \ Final, Final w/ Hyperdiffusion, Final w/ Limiter, \ Final w/ Hyperdiffusion & Limiter)", size = (1600, 2000), ) - Plots.savefig(plot, joinpath("output", "limiter_summary_$alg_str.png")) + Plots.savefig(plot, joinpath("output", "$(test_name)_limiter_summary_$alg_str.png")) end table = pretty_table( vcat(table_rows...); @@ -437,7 +454,7 @@ function limiter_summary(::Type{FT}, algorithm_names, test_case_type, num_steps) "2-Norm Error", "∞-Norm Error", ], - body_hlines = collect(3:3:(length(table_rows) - 1)), + body_hlines = collect(n_tracers:n_tracers:(length(table_rows) - 1)), formatters = ft_printf("%.4e"), ) println(table) diff --git a/docs/src/test_deformational_flow.jl b/docs/src/test_deformational_flow.jl new file mode 100644 index 00000000..2785f8ea --- /dev/null +++ b/docs/src/test_deformational_flow.jl @@ -0,0 +1,4 @@ +using ClimaTimeSteppers +include(joinpath(pkgdir(ClimaTimeSteppers), "test", "problems.jl")) +include(joinpath(pkgdir(ClimaTimeSteppers), "docs", "src", "plotting_utils.jl")) +limiter_summary(Float64, [SSP333(), ARS343()], deformational_flow_test, 1000) diff --git a/perf/Manifest.toml b/perf/Manifest.toml index fe054c18..5f819bdb 100644 --- a/perf/Manifest.toml +++ b/perf/Manifest.toml @@ -254,7 +254,7 @@ weakdeps = ["CUDA", "Krylov"] KrylovExt = "Krylov" [[deps.ClimaTimeSteppers]] -deps = ["ClimaComms", "Colors", "DataStructures", "DiffEqBase", "DiffEqCallbacks", "KernelAbstractions", "Krylov", "LinearAlgebra", "LinearOperators", "NVTX", "SciMLBase", "StaticArrays"] +deps = ["ClimaComms", "Colors", "DataStructures", "DiffEqBase", "DiffEqCallbacks", "KernelAbstractions", "Krylov", "LinearAlgebra", "LinearOperators", "NVTX", "SciMLBase", "StaticArrays", "UnrolledUtilities"] path = ".." uuid = "595c0a79-7f3d-439a-bc5a-b232dc3bde79" version = "0.7.31" @@ -1844,6 +1844,11 @@ git-tree-sha1 = "6cc9d682755680e0f0be87c56392b7651efc2c7b" uuid = "9602ed7d-8fef-5bc8-8597-8f21381861e8" version = "0.1.5" +[[deps.UnrolledUtilities]] +git-tree-sha1 = "b73f7a7c25a2618c5052c80ed32b07e471cc6cb0" +uuid = "0fe1646c-419e-43be-ac14-22321958931b" +version = "0.1.2" + [[deps.UnsafeAtomics]] git-tree-sha1 = "6331ac3440856ea1988316b46045303bef658278" uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" diff --git a/perf/benchmark.jl b/perf/benchmark.jl index 1d8200cb..5af29b66 100644 --- a/perf/benchmark.jl +++ b/perf/benchmark.jl @@ -18,14 +18,14 @@ cts = joinpath(dirname(@__DIR__)); include(joinpath(cts, "test", "problems.jl")) config_integrators(itc::IntegratorTestCase) = config_integrators(itc.prob) function config_integrators(problem) - algorithm = CTS.IMEXAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) + algorithm = CTS.ARKAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) dt = 0.01 integrator = DiffEqBase.init(problem, algorithm; dt) integrator.cache = CTS.init_cache(problem, algorithm) return (; integrator) end prob = if parsed_args["problem"] == "diffusion2d" - climacore_2Dheat_test_cts(Float64) + climacore_1Dheat_test_implicit_cts(Float64) elseif parsed_args["problem"] == "ode_fun" split_linear_prob_wfact_split() elseif parsed_args["problem"] == "fe" diff --git a/perf/flame.jl b/perf/flame.jl index 625e5753..b6f34514 100644 --- a/perf/flame.jl +++ b/perf/flame.jl @@ -20,7 +20,7 @@ function do_work!(integrator, cache) end test_case = climacore_1Dheat_test_cts(Float64) prob = test_case.split_prob -algorithm = CTS.IMEXAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) +algorithm = CTS.ARKAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) dt = 0.01 integrator = DiffEqBase.init(prob, algorithm; dt) cache = CTS.init_cache(prob, algorithm) diff --git a/perf/jet.jl b/perf/jet.jl index 17b6ae19..52a8f148 100644 --- a/perf/jet.jl +++ b/perf/jet.jl @@ -16,7 +16,7 @@ cts = joinpath(dirname(@__DIR__)); include(joinpath(cts, "test", "problems.jl")) config_integrators(itc::IntegratorTestCase) = config_integrators(itc.prob) function config_integrators(problem) - algorithm = CTS.IMEXAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) + algorithm = CTS.ARKAlgorithm(ARS343(), NewtonsMethod(; max_iters = 2)) dt = 0.01 integrator = DiffEqBase.init(problem, algorithm; dt) integrator.cache = CTS.init_cache(problem, algorithm) diff --git a/src/ClimaTimeSteppers.jl b/src/ClimaTimeSteppers.jl index 1fba8092..54ae2cd0 100644 --- a/src/ClimaTimeSteppers.jl +++ b/src/ClimaTimeSteppers.jl @@ -48,59 +48,24 @@ using KernelAbstractions using LinearAlgebra using LinearOperators using StaticArrays +using UnrolledUtilities import ClimaComms using Colors using NVTX -export AbstractAlgorithmName, AbstractAlgorithmConstraint, Unconstrained, SSP +export AbstractAlgorithmName array_device(::Union{Array, SArray, MArray}) = CPU() array_device(x) = CUDADevice() # assume CUDA +float_type(::Type{T}) where {T} = T <: AbstractFloat ? T : promote_type(map(float_type, fieldtypes(T))...) + import DiffEqBase, SciMLBase, LinearAlgebra, DiffEqCallbacks, Krylov -include(joinpath("utilities", "sparse_coeffs.jl")) -include(joinpath("utilities", "fused_increment.jl")) -include("sparse_containers.jl") +include(joinpath("utilities", "sparse_tuple.jl")) include("functions.jl") abstract type DistributedODEAlgorithm <: DiffEqBase.AbstractODEAlgorithm end - -abstract type AbstractAlgorithmName end - -""" - AbstractAlgorithmConstraint - -A mechanism for constraining which operations can be performed by an algorithm -for solving ODEs. - -For example, an unconstrained algorithm might compute a Runge-Kutta stage by -taking linear combinations of tendencies; i.e., by adding quantities of the form -`dt * tendency(state)`. On the other hand, a "strong stability preserving" -algorithm can only take linear combinations of "incremented states"; i.e., it -only adds quantities of the form `state + dt * coefficient * tendency(state)`. -""" -abstract type AbstractAlgorithmConstraint end - -""" - Unconstrained - -Indicates that an algorithm may perform any supported operations. -""" -struct Unconstrained <: AbstractAlgorithmConstraint end - -default_constraint(::AbstractAlgorithmName) = Unconstrained() - -""" - SSP - -Indicates that an algorithm must be "strong stability preserving", which makes -it easier to guarantee that the algorithm will preserve monotonicity properties -satisfied by the initial state. For example, this ensures that the algorithm -will be able to use limiters in a mathematically consistent way. -""" -struct SSP <: AbstractAlgorithmConstraint end - SciMLBase.allowscomplex(alg::DistributedODEAlgorithm) = true include("integrators.jl") @@ -109,17 +74,16 @@ include("utilities/convergence_condition.jl") include("utilities/convergence_checker.jl") include("nl_solvers/newtons_method.jl") +""" + AbstractAlgorithmName -n_stages_ntuple(::Type{<:NTuple{Nstages}}) where {Nstages} = Nstages -n_stages_ntuple(::Type{<:SVector{Nstages}}) where {Nstages} = Nstages - -# Include concrete implementations -const SPCO = SparseCoeffs +Supertype of predefined Runge-Kutta methods. +""" +abstract type AbstractAlgorithmName end +include("solvers/rk_tableaus.jl") +include("solvers/ark_tableaus.jl") +include("solvers/ark_algorithm.jl") -include("solvers/imex_tableaus.jl") -include("solvers/explicit_tableaus.jl") -include("solvers/imex_ark.jl") -include("solvers/imex_ssprk.jl") include("solvers/multirate.jl") include("solvers/lsrk.jl") include("solvers/mis.jl") diff --git a/src/functions.jl b/src/functions.jl index 04c92f4d..ee88769a 100644 --- a/src/functions.jl +++ b/src/functions.jl @@ -4,15 +4,15 @@ export ClimaODEFunction, ForwardEulerODEFunction abstract type AbstractClimaODEFunction <: DiffEqBase.AbstractODEFunction{true} end -struct ClimaODEFunction{TEL, TL, TE, TI, L, D, PE, PI} <: AbstractClimaODEFunction +struct ClimaODEFunction{TEL, TL, TE, TI, L, D, PS, PI} <: AbstractClimaODEFunction T_exp_T_lim!::TEL T_lim!::TL T_exp!::TE T_imp!::TI lim!::L dss!::D - post_explicit!::PE - post_implicit!::PI + post_stage!::PS + pre_implicit_solve!::PI function ClimaODEFunction(; T_exp_T_lim! = nothing, # nothing or (uₜ_exp, uₜ_lim, u, p, t) -> ... T_lim! = nothing, # nothing or (uₜ, u, p, t) -> ... @@ -20,10 +20,10 @@ struct ClimaODEFunction{TEL, TL, TE, TI, L, D, PE, PI} <: AbstractClimaODEFuncti T_imp! = nothing, # nothing or (uₜ, u, p, t) -> ... lim! = (u, p, t, u_ref) -> nothing, dss! = (u, p, t) -> nothing, - post_explicit! = (u, p, t) -> nothing, - post_implicit! = (u, p, t) -> nothing, + post_stage! = (u, p, t) -> nothing, + pre_implicit_solve! = post_stage!, ) - args = (T_exp_T_lim!, T_lim!, T_exp!, T_imp!, lim!, dss!, post_explicit!, post_implicit!) + args = (T_exp_T_lim!, T_lim!, T_exp!, T_imp!, lim!, dss!, post_stage!, pre_implicit_solve!) if !isnothing(T_exp_T_lim!) @assert isnothing(T_exp!) "`T_exp_T_lim!` was passed, `T_exp!` must be `nothing`" @@ -36,9 +36,6 @@ struct ClimaODEFunction{TEL, TL, TE, TI, L, D, PE, PI} <: AbstractClimaODEFuncti end end -has_T_exp(f::ClimaODEFunction) = !isnothing(f.T_exp!) || !isnothing(f.T_exp_T_lim!) -has_T_lim(f::ClimaODEFunction) = !isnothing(f.lim!) && (!isnothing(f.T_lim!) || !isnothing(f.T_exp_T_lim!)) - # Don't wrap a AbstractClimaODEFunction in an ODEFunction (makes ODEProblem work). DiffEqBase.ODEFunction{iip}(f::AbstractClimaODEFunction) where {iip} = f DiffEqBase.ODEFunction(f::AbstractClimaODEFunction) = f diff --git a/src/integrators.jl b/src/integrators.jl index 4d15bcca..930f3907 100644 --- a/src/integrators.jl +++ b/src/integrators.jl @@ -123,8 +123,8 @@ function DiffEqBase.__init( tdir, ) if prob.f isa ClimaODEFunction - (; post_explicit!) = prob.f - isnothing(post_explicit!) || post_explicit!(u0, p, t0) + (; post_stage!) = prob.f + post_stage!(u0, p, t0) end DiffEqBase.initialize!(callback, u0, t0, integrator) return integrator diff --git a/src/nl_solvers/newtons_method.jl b/src/nl_solvers/newtons_method.jl index 479487e4..142dacfb 100644 --- a/src/nl_solvers/newtons_method.jl +++ b/src/nl_solvers/newtons_method.jl @@ -130,7 +130,7 @@ struct ForwardDiffStepSize3 <: ForwardDiffStepSize end Computes the Jacobian-vector product `j(x[n]) * Δx[n]` for a Newton-Krylov method without directly using the Jacobian `j(x[n])`, and instead only using `x[n]`, `f(x[n])`, and other function evaluations `f(x′)`. This is done by -calling `jvp!(::JacobianFreeJVP, cache, jΔx, Δx, x, f!, f, post_implicit!)`. +calling `jvp!(::JacobianFreeJVP, cache, jΔx, Δx, x, f!, f, pre_iteration!)`. The `jΔx` passed to a Jacobian-free JVP is modified in-place. The `cache` can be obtained with `allocate_cache(::JacobianFreeJVP, x_prototype)`, where `x_prototype` is `similar` to `x` (and also to `Δx` and `f`). @@ -151,13 +151,13 @@ end allocate_cache(::ForwardDiffJVP, x_prototype) = (; x2 = similar(x_prototype), f2 = similar(x_prototype)) -function jvp!(alg::ForwardDiffJVP, cache, jΔx, Δx, x, f!, f, post_implicit!) +function jvp!(alg::ForwardDiffJVP, cache, jΔx, Δx, x, f!, f, pre_iteration!) (; default_step, step_adjustment) = alg (; x2, f2) = cache FT = eltype(x) ε = FT(step_adjustment) * default_step(Δx, x) @. x2 = x + ε * Δx - isnothing(post_implicit!) || post_implicit!(x2) + isnothing(pre_iteration!) || pre_iteration!(x2) f!(f2, x2) @. jΔx = (f2 - f) / ε end @@ -343,7 +343,7 @@ end Finds an approximation `Δx[n] ≈ j(x[n]) \\ f(x[n])` for Newton's method such that `‖f(x[n]) - j(x[n]) * Δx[n]‖ ≤ rtol[n] * ‖f(x[n])‖`, where `rtol[n]` is the value of the forcing term on iteration `n`. This is done by calling -`solve_krylov!(::KrylovMethod, cache, Δx, x, f!, f, n, post_implicit!, j = nothing)`, +`solve_krylov!(::KrylovMethod, cache, Δx, x, f!, f, n, pre_iteration!, j = nothing)`, where `f` is `f(x[n])` and, if it is specified, `j` is either `j(x[n])` or an approximation of `j(x[n])`. The `Δx` passed to a Krylov method is modified in-place. The `cache` can be obtained with `allocate_cache(::KrylovMethod, x_prototype)`, @@ -428,14 +428,14 @@ function allocate_cache(alg::KrylovMethod, x_prototype) ) end -NVTX.@annotate function solve_krylov!(alg::KrylovMethod, cache, Δx, x, f!, f, n, post_implicit!, j = nothing) +NVTX.@annotate function solve_krylov!(alg::KrylovMethod, cache, Δx, x, f!, f, n, pre_iteration!, j = nothing) (; jacobian_free_jvp, forcing_term, solve_kwargs) = alg (; disable_preconditioner, debugger) = alg type = solver_type(alg) (; jacobian_free_jvp_cache, forcing_term_cache, solver, debugger_cache) = cache jΔx!(jΔx, Δx) = isnothing(jacobian_free_jvp) ? mul!(jΔx, j, Δx) : - jvp!(jacobian_free_jvp, jacobian_free_jvp_cache, jΔx, Δx, x, f!, f, post_implicit!) + jvp!(jacobian_free_jvp, jacobian_free_jvp_cache, jΔx, Δx, x, f!, f, pre_iteration!) opj = LinearOperator(eltype(x), length(x), length(x), false, false, jΔx!) M = disable_preconditioner || isnothing(j) || isnothing(jacobian_free_jvp) ? I : j print_debug!(debugger, debugger_cache, opj, M) @@ -554,6 +554,8 @@ Base.@kwdef struct NewtonsMethod{ verbose::V = Silent() end +allocate_cache(::Nothing, _, _) = nothing + function allocate_cache(alg::NewtonsMethod, x_prototype, j_prototype = nothing) (; update_j, krylov_method, convergence_checker) = alg @assert !(isnothing(j_prototype) && (isnothing(krylov_method) || isnothing(krylov_method.jacobian_free_jvp))) @@ -573,8 +575,8 @@ solve_newton!( x, f!, j! = nothing, - post_implicit! = nothing, - post_implicit_last! = nothing, + pre_iteration! = nothing, + post_solve! = nothing, ) = nothing NVTX.@annotate function solve_newton!( @@ -583,8 +585,8 @@ NVTX.@annotate function solve_newton!( x, f!, j! = nothing, - post_implicit! = nothing, - post_implicit_last! = nothing, + pre_iteration! = nothing, + post_solve! = nothing, ) (; max_iters, update_j, krylov_method, convergence_checker, verbose) = alg (; krylov_method_cache, convergence_checker_cache) = cache @@ -605,7 +607,7 @@ NVTX.@annotate function solve_newton!( ldiv!(Δx, j, f) end else - solve_krylov!(krylov_method, krylov_method_cache, Δx, x, f!, f, n, post_implicit!, j) + solve_krylov!(krylov_method, krylov_method_cache, Δx, x, f!, f, n, pre_iteration!, j) end is_verbose(verbose) && @info "Newton iteration $n: ‖x‖ = $(norm(x)), ‖Δx‖ = $(norm(Δx))" @@ -613,12 +615,12 @@ NVTX.@annotate function solve_newton!( # Update x[n] with Δx[n - 1], and exit the loop if Δx[n] is not needed. # Check for convergence if necessary. if is_converged!(convergence_checker, convergence_checker_cache, x, Δx, n) - isnothing(post_implicit_last!) || post_implicit_last!(x) + isnothing(post_solve!) || post_solve!(x) break elseif n == max_iters - isnothing(post_implicit_last!) || post_implicit_last!(x) + isnothing(post_solve!) || post_solve!(x) else - isnothing(post_implicit!) || post_implicit!(x) + isnothing(pre_iteration!) || pre_iteration!(x) end if is_verbose(verbose) && n == max_iters @warn "Newton's method did not converge within $n iterations: ‖x‖ = $(norm(x)), ‖Δx‖ = $(norm(Δx))" diff --git a/src/solvers/ark_algorithm.jl b/src/solvers/ark_algorithm.jl new file mode 100644 index 00000000..68667616 --- /dev/null +++ b/src/solvers/ark_algorithm.jl @@ -0,0 +1,512 @@ +export RKAlgorithm, ARKAlgorithm + +#= Derivation of ARK timestepper formulation (TODO: Move to docs) + +Coefficient Definitions: + a_exp, a_imp ∈ R^{s×s} + b_exp, b_imp, c_exp, c_imp ∈ R^s + a_imp is lower triangular, and a_exp is strictly lower triangular + + A_exp := vcat(a_exp, b_exp') + A_imp := vcat(a_imp, b_imp') + + Γ := diag(A_imp) + DA_imp := vcat(Diagonal(A_imp), zeros(s)') + LA_imp := A_imp - DA_imp + +Original Algorithm: +for i ∈ 1:(s + 1) + U_L[i] = u + Δt * (dot(A_exp[i, :], F_exp) + dot(LA_imp[i, :], F_imp)) + if i == s + 1 + u_next = U_L[i] + else + t_exp = t + Δt * c_exp[i] + t_imp = t + Δt * c_imp[i] + U[i] = findmin(x -> |U_L[i] - x + Δt * Γ[i] * f_imp(x, t_imp)|) + F_exp[i] = f_exp(U[i], t_exp) + F_imp[i] = f_imp(U[i], t_imp) + # This value of F_imp[i] is inconsistent with U[i] if findmin is not + # exact, so we replaced it with (U[i] - U_L[i]) / (Δt * Γ[i]) when + # Γ[i] is not 0. + end +end + +Reformulation: + In order to avoid inconsistencies between U[i] and F_imp[i], we want to + avoid computing F_imp[i] on stages with implicit solves (i.e., stages where + Γ[i] is not 0). + + S_z := findall(iszero, Γ) # stages without implicit solves + S_nz := findall(!iszero, Γ) # stages with implicit solves + + F_imp_z := (V = zero(F_imp); V[S_z] = F_imp[S_z]; V) + F_imp_nz := (V = zero(F_imp); V[S_nz] = F_imp[S_nz]; V) + I_z := (M = zero(a_imp); M[S_z, S_z] = I; M) + A_imp_z := (M = zero(A_imp); M[:, S_z] = A_imp[:, S_z]; M) + A_imp_nz := A_imp - A_imp_z + LA_imp_nz := A_imp_nz - DA_imp + a_imp_nz := A_imp_nz[1:s, :] + ΔU_imp_nz := Δt * a_imp_nz * F_imp_nz + + I_z * F_imp_nz = 0 + A_imp_z * F_imp_nz = 0 + A_imp_nz * F_imp_z = 0 + DA_imp * F_imp_z = 0 + I_z * ΔU_imp_nz = 0 + + Since U_L = u .+ Δt * (A_exp * F_exp + LA_imp * F_imp), we want to express + Δt * LA_imp * F_imp in terms of F_imp_z and ΔU_imp_nz. To do this, we must + assume that I_z + a_imp_nz is invertible. + + Δt * F_imp_nz = + = Δt * inv(I_z + a_imp_nz) * (I_z + a_imp_nz) * F_imp_nz + = inv(I_z + a_imp_nz) * Δt * a_imp_nz * F_imp_nz + = inv(I_z + a_imp_nz) * ΔU_imp_nz + = (inv(I_z + a_imp_nz) - I_z) * ΔU_imp_nz + + G_imp_nz := LA_imp_nz * (inv(I_z + a_imp_nz) - I_z) + + Δt * LA_imp * F_imp = + = Δt * LA_imp * (F_imp_z + F_imp_nz) + = Δt * (A_imp_z * F_imp_z + LA_imp_nz * F_imp_nz) + = Δt * A_imp_z * F_imp_z + G_imp_nz * ΔU_imp_nz + +Reformulated Algorithm: +for i ∈ 1:(s + 1) + U_L[i] = + u + Δt * (dot(A_exp[i, :], F_exp) + dot(A_imp_z[i, :], F_imp_z)) + + dot(G_imp_nz[i, :], ΔU_imp_nz) + if i == s + 1 + u_next = U_L[i] + else + t_exp = t + Δt * c_exp[i] + t_imp = t + Δt * c_imp[i] + if i ∈ S_z + U[i] = U_L[i] # no need to use findmin, since Γ[i] is 0 + else + U[i] = findmin(x -> |U_L[i] - x + Δt * Γ[i] * f_imp(x, t_imp)|) + end + F_exp[i] = f_exp(U[i], t_exp) + if i ∈ S_z + F_imp_z[i] = f_imp(U[i], t_imp) # never inconsistent with U[i] + else + ΔU_imp_nz[i] = U[i] - U_L[i] + dot(G_imp_nz[i, :], ΔU_imp_nz) + end + end +end +=# + +""" + RKAlgorithm(tableau) + RKAlgorithm(name) + +Constructs a Runge-Kutta (RK) algorithm for solving ODEs. The first constructor +accepts any `RKTableau` and leaves the algorithm unnamed, while the second +determines the tableau from an `RKAlgorithmName`. Each of these constructors +just makes an `ARKAlgorithm` with identical `lim`, `exp`, and `imp` tableaus. +""" +RKAlgorithm(tableau::RKTableau) = ARKAlgorithm(ARKTableau(tableau)) +RKAlgorithm(name::RKAlgorithmName) = ARKAlgorithm(name, ARKTableau(RKTableau(name)), nothing) + +""" + ARKAlgorithm(tableau, [newtons_method]) + ARKAlgorithm(name, [newtons_method]) + +Constructs an additive Runge-Kutta (ARK) algorithm for solving ODEs. The first +constructor accepts any `ARKTableau` and leaves the algorithm unnamed, while the +second determines the tableau from an `ARKAlgorithmName`. If the specified `imp` +tableau necessitates the use of an implicit solver for the problem that this +algorithm will solve, a `NewtonsMethod` must also be specified. +""" +struct ARKAlgorithm{N <: Union{Nothing, AbstractAlgorithmName}, T <: ARKTableau, NM <: Union{Nothing, NewtonsMethod}} <: + DistributedODEAlgorithm + name::N + tableau::T + newtons_method::NM +end +ARKAlgorithm(tableau_or_name) = ARKAlgorithm(tableau_or_name, nothing) +ARKAlgorithm(tableau::ARKTableau, newtons_method) = ARKAlgorithm(nothing, tableau, newtons_method) +ARKAlgorithm(name::ARKAlgorithmName, newtons_method) = ARKAlgorithm(name, ARKTableau(name), newtons_method) +ARKAlgorithm(name::ARKRosenbrockAlgorithmName, _) = ARKAlgorithm(name, ARKTableau(name), nothing) + +has_jac(T_imp!) = + hasfield(typeof(T_imp!), :Wfact) && + hasfield(typeof(T_imp!), :jac_prototype) && + !isnothing(T_imp!.Wfact) && + !isnothing(T_imp!.jac_prototype) + +imp_error(name) = error("$(isnothing(name) ? "The given ARKTableau" : name) \ + has implicit stages that require a nonlinear solver, \ + so NewtonsMethod must be specified alongside T_imp!.") + +sdirk_error(name) = error("$(isnothing(name) ? "The given ARKTableau" : name) \ + has implicit stages with distinct coefficients (it \ + is not SDIRK), and an update is required whenever a \ + stage has a different coefficient from the previous \ + stage. Do not update on the NewTimeStep signal when \ + using $(isnothing(name) ? "this tableau" : name).") + +function fix_float_error(value) + FT = typeof(value) + FT <: AbstractFloat || return value + atol = 100 * eps(FT) + abs(value) > atol || return 0 + for denominator in 1:100, numerator in (-10 * denominator):(10 * denominator) + abs(value - numerator // denominator) > atol || return numerator // denominator + end + return value +end + +struct ARKAlgorithmCache{T, N} + timestepper_cache::T + newtons_method_cache::N +end + +function init_cache(prob::DiffEqBase.AbstractODEProblem, alg::ARKAlgorithm; kwargs...) + (; u0) = prob + (; T_lim!, T_exp!, T_exp_T_lim!, T_imp!) = prob.f + (; name, tableau, newtons_method) = alg + + FT = float_type(eltype(u0)) + isconcretetype(FT) || error("floating point type of initial state is not concrete: $FT") + + s = length(tableau.imp.b) # number of internal stages + + A_lim = vcat(tableau.lim.a, tableau.lim.b') + A_exp = vcat(tableau.exp.a, tableau.exp.b') + A_imp = vcat(tableau.imp.a, tableau.imp.b') + Γ_imp = vcat(tableau.imp.Γ, tableau.imp.b') + + DΓ = diag(tableau.imp.Γ) + DΓ_imp = vcat(Diagonal(DΓ), zeros(s)') + LΓ_imp = Γ_imp - DΓ_imp + + z_stages = findall(iszero, DΓ) # stages without implicit solves + nz_stages = findall(!iszero, DΓ) # stages with implicit solves + + I_z = zeros(s, s) + I_z[z_stages, z_stages] = Matrix(I, length(z_stages), length(z_stages)) + + A_imp_z = zeros(s + 1, s) + A_imp_z[:, z_stages] = A_imp[:, z_stages] + + A_imp_nz = A_imp - A_imp_z + DA = diag(tableau.imp.a) + DA_imp = vcat(Diagonal(DA), zeros(s)') + LA_imp = A_imp - DA_imp + LA_imp_nz = A_imp_nz - DA_imp + + Γ_imp_z = zeros(s + 1, s) + Γ_imp_z[:, z_stages] = Γ_imp[:, z_stages] + + Γ_imp_nz = Γ_imp - Γ_imp_z + LΓ_imp_nz = Γ_imp_nz - DΓ_imp + + γ_imp_nz = Γ_imp_nz[1:s, :] + Γ_imp⁻¹_nz = vcat(inv(γ_imp_nz), zeros(s)') + DΓ_imp⁻¹_imp = vcat(Diagonal(Γ_imp⁻¹_nz), zeros(s)') + LΓ_imp⁻¹_nz = Γ_imp⁻¹_nz - DΓ_imp⁻¹_imp + + G_imp_nz = fix_float_error.(LA_imp_nz * (inv(I_z + γ_imp_nz) - I_z)) + @assert all(iszero, G_imp_nz[:, z_stages]) + @assert all(iszero, UpperTriangular(G_imp_nz[1:s, :])) + @assert all(value -> value == 0 || abs(value) > 100 * eps(), G_imp_nz) + + empty_matrix_rows = ntuple(_ -> SparseTuple(), s + 1) + empty_vector = SparseTuple() + + if isnothing(T_lim!) && isnothing(T_exp_T_lim!) + r_lim = nothing + A_lim_rows = empty_matrix_rows + T_lim_sparse = empty_vector + else + r_lim = if isnothing(tableau.lim.α) + @warn "a canonical Shu-Osher formulation is required in order to \ + use limiters in a way that exactly preserves monotonicity" + nothing + else + # Use the Shu-Osher formulation to get each stage's SSP coefficient. + β_lim = A_lim - tableau.lim.α * A_lim[1:s, :] + @assert all(>=(0), β_lim) + @assert all(iszero, UpperTriangular(β_lim[1:s, :])) + @assert issubset(findall(iszero, tableau.lim.α), findall(iszero, β_lim)) + map(eachcol(tableau.lim.α), eachcol(β_lim)) do α_column, β_column + nonzero_stages = findall(!iszero, β_column) + isempty(nonzero_stages) ? FT(0) : FT(minimum(α_column[nonzero_stages] ./ β_column[nonzero_stages])) + end + end + # Use the Butcher formulation for other computations involving T_lim. + A_lim_rows = sparse_matrix_rows(FT.(A_lim)) + T_lim_sparse = SparseTuple(_ -> similar(u0), findall(!iszero, eachcol(A_lim))) + end + + if isnothing(T_exp!) && isnothing(T_exp_T_lim!) + A_exp_rows = empty_matrix_rows + T_exp_sparse = empty_vector + else + # Use the Butcher formulation for T_exp. + A_exp_rows = sparse_matrix_rows(FT.(A_exp)) + T_exp_sparse = SparseTuple(_ -> similar(u0), findall(!iszero, eachcol(A_exp))) + end + + if isnothing(T_imp!) + LA_imp_rows = G_imp_rows = Γinv_imp_rows = empty_matrix_rows + T_imp_sparse = ΔU_imp_nz_sparse = empty_vector + elseif count(!iszero, LA_imp_nz) <= count(!iszero, G_imp_nz) + # Use the Butcher formulation for T_imp if its matrix is sparser, or if + # both formulations have the same sparsity. + LA_imp_rows = sparse_matrix_rows(FT.(LA_imp)) + G_imp_rows = empty_matrix_rows + Γinv_imp_rows = empty_matrix_rows + T_imp_sparse = SparseTuple(_ -> similar(u0), findall(!iszero, eachcol(LA_imp))) + ΔU_imp_nz_sparse = empty_vector + else + # Use the increment formulation for T_imp if its matrix is sparser. + LA_imp_rows = sparse_matrix_rows(FT.(A_imp_z)) + G_imp_rows = sparse_matrix_rows(FT.(G_imp_nz)) + Γinv_imp_rows = sparse_matrix_rows(FT.(LΓ_imp⁻¹_nz)) + T_imp_sparse = SparseTuple(_ -> similar(u0), findall(!iszero, eachcol(A_imp_z))) + ΔU_imp_nz_sparse = SparseTuple(_ -> similar(u0), findall(!iszero, eachcol(G_imp_nz))) + end + + timestepper_cache = (; + internal_and_final_stages = ntuple(identity, s + 1), + γ = length(unique(DΓ[nz_stages])) == 1 ? FT(DΓ[nz_stages[1]]) : nothing, + DΓ = FT.(DΓ), + Γ_imp = FT.(Γ_imp), + c_lim = FT.(tableau.lim.c), + c_exp = FT.(tableau.exp.c), + c_imp = FT.(tableau.imp.c), + r_lim, + A_lim_rows, + A_exp_rows, + LA_imp_rows, + G_imp_rows, + Γinv_imp_rows, + T_lim_sparse, + T_exp_sparse, + T_imp_sparse, + ΔU_imp_nz_sparse, + T_lim = dense_tuple(T_lim_sparse, s + 1, nothing), + T_exp = dense_tuple(T_exp_sparse, s + 1, nothing), + T_imp = dense_tuple(T_imp_sparse, s + 1, nothing), + ΔU_imp_nz = dense_tuple(ΔU_imp_nz_sparse, s + 1, nothing), + u_on_stage = similar(u0), + u_plus_Δu_lim = similar(u0), + ) + + newtons_method_cache = if !iszero(DΓ) && !isnothing(T_imp!) + (isnothing(newtons_method) && !(name isa ClimaTimeSteppers.ARKRosenbrockAlgorithmName)) && imp_error(name) + j = has_jac(T_imp!) ? T_imp!.jac_prototype : nothing + allocate_cache(newtons_method, u0, j) + else + nothing + end + + return ARKAlgorithmCache(timestepper_cache, newtons_method_cache) +end + +function step_implicit!(name, + newtons_method, + newtons_method_cache, + u_on_stage, + T_imp!, + p, + t_imp, + u_minus_Δu_imp_from_solve, + Δtγ, + pre_implicit_solve!, + post_stage!, + Γinv_imp_rows, + ΔU_imp_nz_sparse + ) + # Solve u′ ≈ u_minus_Δu_imp_from_solve + Δtγ * T_imp(u′, p, t_imp). + solve_newton!( + newtons_method, + newtons_method_cache, + u_on_stage, + (residual, u′) -> begin + T_imp!(residual, u′, p, t_imp) + @. residual = u_minus_Δu_imp_from_solve + Δtγ * residual - u′ + end, + (jacobian, u′) -> T_imp!.Wfact(jacobian, u′, p, Δtγ, t_imp), + u′ -> pre_implicit_solve!(u′, p, t_imp), + u′ -> post_stage!(u′, p, t_imp), + ) +end + +function step_implicit!(name::ClimaTimeSteppers.ARKRosenbrockAlgorithmName, + newtons_method, + newtons_method_cache, + u_on_stage, + T_imp!, + p, + t_imp, + u_minus_Δu_imp_from_solve, + Δtγ, + pre_implicit_solve!, + post_stage!, + Γinv_imp_rows, + ΔU_imp_nz_sparse + ) + u_on_stage .= broadcasted_dot(Γinv_imp_rows, ΔU_imp_nz_sparse) +end + +function step_u!(integrator, cache::ARKAlgorithmCache) + (; u, p, t, alg) = integrator + (; T_lim!, T_exp!, T_exp_T_lim!, T_imp!) = integrator.sol.prob.f + (; lim!, dss!, post_stage!, pre_implicit_solve!) = integrator.sol.prob.f + (; name, newtons_method) = alg + (; newtons_method_cache) = cache + (; + internal_and_final_stages, + γ, + DΓ, + c_lim, + c_exp, + c_imp, + r_lim, + A_lim_rows, + A_exp_rows, + LA_imp_rows, + G_imp_rows, + Γinv_imp_rows, + T_lim_sparse, + T_exp_sparse, + T_imp_sparse, + ΔU_imp_nz_sparse, + T_lim, + T_exp, + T_imp, + ΔU_imp_nz, + u_on_stage, + u_plus_Δu_lim, + ) = cache.timestepper_cache + + Δt = integrator.dt + s = length(internal_and_final_stages) - 1 + + if !isnothing(newtons_method_cache) + (; update_j) = newtons_method + (; j) = newtons_method_cache + if !isnothing(j) && needs_update!(update_j, NewTimeStep(t)) + isnothing(γ) && sdirk_error(name) + T_imp!.Wfact(j, u, p, Δt * γ, t) + end + end + + u_on_stage .= u + + # Use unrolled_foreach instead of a regular loop to ensure type stability + # with nonuniform tuples. + unrolled_foreach( + internal_and_final_stages, + A_lim_rows, + A_exp_rows, + LA_imp_rows, + G_imp_rows, + T_lim, + T_exp, + T_imp, + ΔU_imp_nz, + ) do stage, A_lim_row, A_exp_row, LA_imp_row, G_imp_row, T_lim_on_stage, T_exp_on_stage, T_imp_on_stage, Δu_imp_nz + Δu_lim_over_Δt = broadcasted_dot(A_lim_row, T_lim_sparse) + Δu_exp_over_Δt = broadcasted_dot(A_exp_row, T_exp_sparse) + Δu_imp_from_T_over_Δt = broadcasted_dot(LA_imp_row, T_imp_sparse) + Δu_imp_from_ΔU = broadcasted_dot(G_imp_row, ΔU_imp_nz_sparse) + + # Get a lazy representation of the state on the current stage, but + # without the contribution from the implicit solve (if there is one). + u_minus_Δu_imp_from_solve = if isempty(A_lim_row) || !isnothing(r_lim) + Δu_from_T_over_Δt = Base.broadcasted(+, Δu_lim_over_Δt, Δu_exp_over_Δt, Δu_imp_from_T_over_Δt) + Base.broadcasted(+, u, Base.broadcasted(*, Δt, Δu_from_T_over_Δt), Δu_imp_from_ΔU) + else + # The following operations do not make sense in the context of a + # Runge-Kutta method, so the time passed to lim and dss is nothing. + @. u_plus_Δu_lim = u + Δt * Δu_lim_over_Δt + lim!(u_plus_Δu_lim, p, nothing, u) + stage < s + 1 && dss!(u_plus_Δu_lim, p, nothing) + + Δu_from_T_over_Δt = Base.broadcasted(+, Δu_exp_over_Δt, Δu_imp_from_T_over_Δt) + Base.broadcasted(+, u_plus_Δu_lim, Base.broadcasted(*, Δt, Δu_from_T_over_Δt), Δu_imp_from_ΔU) + end + + # If we are past the last stage, compute the final state and apply dss! + # and post_stage!. + if stage == s + 1 + @. u = u_minus_Δu_imp_from_solve + dss!(u, p, t + Δt) + post_stage!(u, p, t + Δt) + return + end + + Δtγ = Δt * DΓ[stage] + t_lim = t + Δt * c_lim[stage] + t_exp = t + Δt * c_exp[stage] + t_imp = t + Δt * c_imp[stage] + + # Compute the state on the current stage. Apply post_stage! if it is + # different from the previous state. + if !isnothing(T_imp!) && !iszero(Δtγ) + @. u_on_stage = u_minus_Δu_imp_from_solve + # TODO: Is u_minus_Δu_imp_from_solve a good initial guess? + # Alternatives include u and u_on_stage + Δtγ * T_imp(u_on_stage). + + pre_implicit_solve!(u_on_stage, p, t_imp) + + step_implicit!(name, + newtons_method, + newtons_method_cache, + u_on_stage, + T_imp!, + p, + t_imp, + u_minus_Δu_imp_from_solve, + Δtγ, + pre_implicit_solve!, + post_stage!, + Γinv_imp_rows, + ΔU_imp_nz_sparse) + else + @. u_on_stage = u_minus_Δu_imp_from_solve + if !isempty(A_lim_row) || !isempty(A_exp_row) || !isempty(LA_imp_row) || !isempty(G_imp_row) + post_stage!(u_on_stage, p, t_imp) + end + end + + # Compute the limited and/or explicit tendencies for the current stage. + # Apply the limiter if SSP coefficients are available. Apply DSS on all + # but the last stage. + if !isnothing(T_lim_on_stage) || !isnothing(T_exp_on_stage) + !isnothing(T_lim!) && T_lim!(T_lim_on_stage, u_on_stage, p, t_lim) + !isnothing(T_exp!) && T_exp!(T_exp_on_stage, u_on_stage, p, t_exp) + if !isnothing(T_exp_T_lim!) + @assert t_lim == t_exp + T_exp_T_lim!(T_exp_on_stage, T_lim_on_stage, u_on_stage, p, t_exp) + end + if !isnothing(r_lim) + Δt_SSP = Δt / r_lim[stage] + @. u_plus_Δu_lim = u_on_stage + Δt_SSP * T_lim_on_stage + lim!(u_plus_Δu_lim, p, t_lim, u_on_stage) + @. T_lim_on_stage = (u_plus_Δu_lim - u_on_stage) / Δt_SSP + end + if stage < s + !isnothing(T_lim!) && dss!(T_lim_on_stage, p, t_lim) + !isnothing(T_exp!) && dss!(T_exp_on_stage, p, t_exp) + if !isnothing(T_exp_T_lim!) # TODO: Add support for fusing DSS. + dss!(T_lim_on_stage, p, t_lim) + dss!(T_exp_on_stage, p, t_exp) + end + end + end + + # Compute the implicit tendency or increment for the current stage. + if !isnothing(T_imp_on_stage) && iszero(Δtγ) + T_imp!(T_imp_on_stage, u_on_stage, p, t_imp) + elseif !isnothing(T_imp_on_stage) + @. T_imp_on_stage = (u_on_stage - u_minus_Δu_imp_from_solve) / Δtγ + elseif !isnothing(Δu_imp_nz) + @. Δu_imp_nz = u_on_stage - u_minus_Δu_imp_from_solve + Δu_imp_from_ΔU + end + end +end diff --git a/src/solvers/imex_tableaus.jl b/src/solvers/ark_tableaus.jl similarity index 58% rename from src/solvers/imex_tableaus.jl rename to src/solvers/ark_tableaus.jl index 5c0fc068..ffe4690c 100644 --- a/src/solvers/imex_tableaus.jl +++ b/src/solvers/ark_tableaus.jl @@ -1,76 +1,110 @@ -export IMEXTableau, IMEXAlgorithm +export ARKSSPKnoth export ARS111, ARS121, ARS122, ARS233, ARS232, ARS222, ARS343, ARS443 export IMKG232a, IMKG232b, IMKG242a, IMKG242b, IMKG243a, IMKG252a, IMKG252b export IMKG253a, IMKG253b, IMKG254a, IMKG254b, IMKG254c, IMKG342a, IMKG343a export SSP222, SSP322, SSP332, SSP333, SSP433 export DBM453, HOMMEM1, ARK2GKC, ARK437L2SA1, ARK548L2SA2 -abstract type IMEXARKAlgorithmName <: AbstractAlgorithmName end - """ - IMEXTableau(; a_exp, b_exp, c_exp, a_imp, b_imp, c_imp) + ARKTableau(lim, exp, imp) + ARKTableau(lim_and_exp, imp) + ARKTableau(lim_and_exp) + +A container for all of the information required to formulate an additive +Runge-Kutta (ARK) timestepping method with three components: + - `lim`, an `RKTableau` applied to the limited tendency `T_lim!` + - `exp`, an `RKTableau` applied to the explicit tendency `T_exp!` + - `imp`, an `RKTableau` applied to the implicit tendency `T_imp!` -A wrapper for an IMEX Butcher tableau (or, more accurately, a pair of Butcher -tableaus, one for explicit tendencies and the other for implicit tendencies). -Only `a_exp` and `a_imp` are required arguments; the default values for `b_exp` -and `b_imp` assume that the algorithm is FSAL (first same as last), and the -default values for `c_exp` and `c_imp` assume that it is internally consistent. +If either the `lim` or `exp` tableau is not specified, they are assumed to be +identical. If the `imp` tableau is also not specified, it is assumed to be the +same as the `lim` and `exp` tableaus. -The explicit tableau must be strictly lower triangular, and the implicit tableau -must be lower triangular (only DIRK algorithms are currently supported). +The `exp` tableau must describe an explicit Runge-Kutta (ERK) method, and the +`imp` tableau must describe either a diagonally implicit Runge-Kutta (DIRK) +method or an ERK method. We also require the `lim` tableau to describe an ERK +method, but we could potentially extend this to DIRK methods in the future. + +If the `lim` tableau includes a canonical Shu-Osher formulation matrix, that +formulation is used to apply limiters. Otherwise, limiters can only be applied +approximately, without any guarantees that monotonicity will be preserved. """ -struct IMEXTableau{AE <: SPCO, BE <: SPCO, CE <: SPCO, AI <: SPCO, BI <: SPCO, CI <: SPCO} - a_exp::AE # matrix of size s×s - b_exp::BE # vector of length s - c_exp::CE # vector of length s - a_imp::AI # matrix of size s×s - b_imp::BI # vector of length s - c_imp::CI # vector of length s -end -IMEXTableau(args...) = IMEXTableau(map(x -> SparseCoeffs(x), args)...) - -function IMEXTableau(; - a_exp, - b_exp = a_exp[end, :], - c_exp = vec(sum(a_exp; dims = 2)), - a_imp, - b_imp = a_imp[end, :], - c_imp = vec(sum(a_imp; dims = 2)), -) - @assert all(iszero, UpperTriangular(a_exp)) - @assert all(iszero, UpperTriangular(a_imp) - Diagonal(a_imp)) +struct ARKTableau{FT, L <: RKTableau{FT}, E <: RKTableau{FT}, I <: RKTableau{FT}} + lim::L + exp::E + imp::I + + # NOTE: This needs to be an internal constructor to prevent it from + # overwriting the default constructor during precompilation. + function ARKTableau(lim::RKTableau{FT}, exp::RKTableau{FT}, imp::RKTableau{FT}) where {FT} + is_ERK(lim) || error("lim tableau is not ERK") + is_ERK(exp) || error("exp tableau is not ERK") + is_ERK(imp) || is_DIRK(imp) || error("imp tableau is not ERK, DIRK") - # TODO: add generic promote_eltype - a_exp, a_imp = promote(a_exp, a_imp) - b_exp, b_imp, c_exp, c_imp = promote(b_exp, b_imp, c_exp, c_imp) - return IMEXTableau(a_exp, b_exp, c_exp, a_imp, b_imp, c_imp) + lim.c == exp.c || @warn "lim and exp tableaus are not internally consistent" + + return new{FT, typeof(lim), typeof(exp), typeof(imp)}(lim, exp, imp) + end end +ARKTableau(lim::RKTableau, exp::RKTableau, imp::RKTableau) = ARKTableau(promote(lim, exp, imp)...) +ARKTableau(lim_and_exp::RKTableau, imp::RKTableau) = ARKTableau(lim_and_exp, lim_and_exp, imp) +ARKTableau(lim_and_exp::RKTableau) = ARKTableau(lim_and_exp, lim_and_exp) + +""" + ARKAlgorithmName + +An `AbstractAlgorithmName` with a method of the form `ARKTableau(name)`. +""" +abstract type ARKAlgorithmName <: AbstractAlgorithmName end + +""" + ARKRosenbrockAlgorithmName + +An `AbstractAlgorithmName` with a method of the form `ARKTableau(name)` and that does not require +a Newton's solver. +""" +abstract type ARKRosenbrockAlgorithmName <: AbstractAlgorithmName end """ - IMEXAlgorithm(tableau, newtons_method, [constraint]) - IMEXAlgorithm(name, newtons_method, [constraint]) - -Constructs an IMEX algorithm for solving ODEs, with an optional name and -constraint. The first constructor accepts any `IMEXTableau` and an optional -constraint, leaving the algorithm unnamed. The second constructor automatically -determines the tableau and the default constraint from the algorithm name, -which must be an `IMEXARKAlgorithmName`. -""" -struct IMEXAlgorithm{ - C <: AbstractAlgorithmConstraint, - N <: Union{Nothing, AbstractAlgorithmName}, - T <: IMEXTableau, - NM <: Union{Nothing, NewtonsMethod}, -} <: DistributedODEAlgorithm - constraint::C - name::N - tableau::T - newtons_method::NM + IMEXSSPRKAlgorithmName + +An `ARKAlgorithmName` whose `lim` tableau has a canonical Shu-Osher formulation. +""" +abstract type IMEXSSPRKAlgorithmName <: ARKAlgorithmName end + +################################################################################ +""" + ARKSSPKnoth +""" +struct ARKSSPKnoth <: ARKRosenbrockAlgorithmName end +function ARKTableau(::ARKSSPKnoth) + sspknoth = RosenbrockTableau( + [ + 1 0 0 + 0 1 0 + -3//4 -3//4 1 + ], + [ + 0 0 0 + 1 0 0 + 1//4 1//4 0 + ], + [1 // 6, 1 // 6, 2 // 3], + ) + γ = 1 - √2 / 2 + δ = -2√2 / 3 + other = ButcherTableau( + [ + 0 0 0 + γ 0 0 + δ (1-δ) 0 + ], + [0, 1 - γ, γ], + ) + + ARKTableau(other, sspknoth) end -IMEXAlgorithm(tableau::IMEXTableau, newtons_method, constraint = Unconstrained()) = - IMEXAlgorithm(constraint, nothing, tableau, newtons_method) -IMEXAlgorithm(name::IMEXARKAlgorithmName, newtons_method, constraint = default_constraint(name)) = - IMEXAlgorithm(constraint, name, IMEXTableau(name), newtons_method) + ################################################################################ @@ -86,10 +120,8 @@ An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 1 implicit stage, 1 explicit stage and 1st order accuracy. Also called *IMEX Euler* or *forward-backward Euler*; equivalent to `OrdinaryDiffEq.IMEXEuler`. """ -struct ARS111 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS111) - IMEXTableau(; a_exp = @SArray([0 0; 1 0]), a_imp = @SArray([0 0; 0 1])) -end +struct ARS111 <: ARKAlgorithmName end +ARKTableau(::ARS111) = ARKTableau(ButcherTableau([0 0; 1 0]), ButcherTableau([0 0; 0 1])) """ ARS121 @@ -98,10 +130,8 @@ An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 1 implicit stage, 2 explicit stages, and 1st order accuracy. Also called *IMEX Euler* or *forward-backward Euler*; equivalent to `OrdinaryDiffEq.IMEXEulerARK`. """ -struct ARS121 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS121) - IMEXTableau(; a_exp = @SArray([0 0; 1 0]), b_exp = @SArray([0, 1]), a_imp = @SArray([0 0; 0 1])) -end +struct ARS121 <: ARKAlgorithmName end +ARKTableau(::ARS121) = ARKTableau(ButcherTableau([0 0; 1 0], [0, 1]), ButcherTableau([0 0; 0 1])) """ ARS122 @@ -109,15 +139,8 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 1 implicit stage, 2 explicit stages, and 2nd order accuracy. Also called *IMEX midpoint*. """ -struct ARS122 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS122) - IMEXTableau(; - a_exp = @SArray([0 0; 1/2 0]), - b_exp = @SArray([0, 1]), - a_imp = @SArray([0 0; 0 1/2]), - b_imp = @SArray([0, 1]) - ) -end +struct ARS122 <: ARKAlgorithmName end +ARKTableau(::ARS122) = ARKTableau(ButcherTableau([0 0; 1//2 0], [0, 1]), ButcherTableau([0 0; 0 1//2], [0, 1])) """ ARS233 @@ -125,22 +148,26 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 2 implicit stages, 3 explicit stages, and 3rd order accuracy. """ -struct ARS233 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS233) +struct ARS233 <: ARKAlgorithmName end +function ARKTableau(::ARS233) γ = 1 / 2 + √3 / 6 - IMEXTableau(; - a_exp = @SArray([ - 0 0 0 - γ 0 0 - (γ-1) (2-2γ) 0 - ]), - b_exp = @SArray([0, 1 / 2, 1 / 2]), - a_imp = @SArray([ - 0 0 0 - 0 γ 0 - 0 (1-2γ) γ - ]), - b_imp = @SArray([0, 1 / 2, 1 / 2]) + return ARKTableau( + ButcherTableau( + [ + 0 0 0 + γ 0 0 + (γ-1) (2-2γ) 0 + ], + [0, 1 / 2, 1 / 2], + ), + ButcherTableau( + [ + 0 0 0 + 0 γ 0 + 0 (1-2γ) γ + ], + [0, 1 / 2, 1 / 2], + ), ) end @@ -150,23 +177,22 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 2 implicit stages, 3 explicit stages, and 2nd order accuracy. """ -struct ARS232 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS232) +struct ARS232 <: ARKAlgorithmName end +function ARKTableau(::ARS232) γ = 1 - √2 / 2 δ = -2√2 / 3 - IMEXTableau(; - a_exp = @SArray([ + return ARKTableau(ButcherTableau( + [ 0 0 0 γ 0 0 δ (1-δ) 0 - ]), - b_exp = @SArray([0, 1 - γ, γ]), - a_imp = @SArray([ - 0 0 0 - 0 γ 0 - 0 (1-γ) γ - ]) - ) + ], + [0, 1 - γ, γ], + ), ButcherTableau([ + 0 0 0 + 0 γ 0 + 0 (1-γ) γ + ])) end """ @@ -175,15 +201,15 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 2 implicit stages, 2 explicit stages, and 2nd order accuracy. """ -struct ARS222 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS222) +struct ARS222 <: ARKAlgorithmName end +function ARKTableau(::ARS222) γ = 1 - √2 / 2 δ = 1 - 1 / 2γ - IMEXTableau(; a_exp = @SArray([ + return ARKTableau(ButcherTableau([ 0 0 0 γ 0 0 δ (1-δ) 0 - ]), a_imp = @SArray([ + ]), ButcherTableau([ 0 0 0 0 γ 0 0 (1-γ) γ @@ -196,8 +222,8 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 3 implicit stages, 4 explicit stages, and 3rd order accuracy. """ -struct ARS343 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS343) +struct ARS343 <: ARKAlgorithmName end +function ARKTableau(::ARS343) γ = 0.4358665215084590 a42 = 0.5529291480359398 a43 = a42 @@ -209,20 +235,22 @@ function IMEXTableau(::ARS343) (-1 + 9 / 2 * γ - 3 / 2 * γ^2) * a42 + (-11 / 4 + 21 / 2 * γ - 15 / 4 * γ^2) * a43 + 4 - 25 / 2 * γ + 9 / 2 * γ^2 a41 = 1 - a42 - a43 - IMEXTableau(; - a_exp = @SArray([ - 0 0 0 0 - γ 0 0 0 - a31 a32 0 0 - a41 a42 a43 0 - ]), - b_exp = @SArray([0, b1, b2, γ]), - a_imp = @SArray([ + return ARKTableau( + ButcherTableau( + [ + 0 0 0 0 + γ 0 0 0 + a31 a32 0 0 + a41 a42 a43 0 + ], + [0, b1, b2, γ], + ), + ButcherTableau([ 0 0 0 0 0 γ 0 0 0 (1 - γ)/2 γ 0 0 b1 b2 γ - ]) + ]), ) end @@ -232,25 +260,23 @@ end An IMEX ARK algorithm from [ARS1997](@cite), section 2, with 4 implicit stages, 4 explicit stages, and 3rd order accuracy. """ -struct ARS443 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARS443) - IMEXTableau(; - a_exp = @SArray([ - 0 0 0 0 0 - 1/2 0 0 0 0 - 11/18 1/18 0 0 0 - 5/6 -5/6 1/2 0 0 - 1/4 7/4 3/4 -7/4 0 - ]), - a_imp = @SArray([ - 0 0 0 0 0 - 0 1/2 0 0 0 - 0 1/6 1/2 0 0 - 0 -1/2 1/2 1/2 0 - 0 3/2 -3/2 1/2 1/2 - ]) - ) -end +struct ARS443 <: ARKAlgorithmName end +ARKTableau(::ARS443) = ARKTableau( + ButcherTableau([ + 0 0 0 0 0 + 1//2 0 0 0 0 + 11//18 1//18 0 0 0 + 5//6 -5//6 1//2 0 0 + 1//4 7//4 3//4 -7//4 0 + ]), + ButcherTableau([ + 0 0 0 0 0 + 0 1//2 0 0 0 + 0 1//6 1//2 0 0 + 0 -1//2 1//2 1//2 0 + 0 3//2 -3//2 1//2 1//2 + ]), +) ################################################################################ @@ -277,12 +303,11 @@ end imkg_exp(i, j, α, β) = i == j + 1 ? α[j] : (i > 2 && j == 1 ? β[i - 2] : 0) imkg_imp(i, j, α̂, β, δ̂) = i == j + 1 ? α̂[j] : (i > 2 && j == 1 ? β[i - 2] : (1 < i <= length(α̂) && i == j ? δ̂[i - 1] : 0)) -function IMKGTableau(α, α̂, δ̂, β = ntuple(_ -> 0, length(δ̂))) +function IMKGTableau(α, α̂, δ̂, β = zero(δ̂)) s = length(α̂) + 1 - type = SMatrix{s, s} - return IMEXTableau(; - a_exp = StaticArrays.sacollect(type, imkg_exp(i, j, α, β) for i in 1:s, j in 1:s), - a_imp = StaticArrays.sacollect(type, imkg_imp(i, j, α̂, β, δ̂) for i in 1:s, j in 1:s), + return ARKTableau( + ButcherTableau([imkg_exp(i, j, α, β) for i in 1:s, j in 1:s]), + ButcherTableau([imkg_imp(i, j, α̂, β, δ̂) for i in 1:s, j in 1:s]), ) end @@ -292,10 +317,8 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 3 explicit stages, and 2nd order accuracy. """ -struct IMKG232a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG232a) - IMKGTableau((1 / 2, 1 / 2, 1), (0, -1 / 2 + √2 / 2, 1), (1 - √2 / 2, 1 - √2 / 2)) -end +struct IMKG232a <: ARKAlgorithmName end +ARKTableau(::IMKG232a) = IMKGTableau([1 / 2, 1 / 2, 1], [0, -1 / 2 + √2 / 2, 1], [1 - √2 / 2, 1 - √2 / 2]) """ IMKG232b @@ -303,10 +326,8 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 3 explicit stages, and 2nd order accuracy. """ -struct IMKG232b <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG232b) - IMKGTableau((1 / 2, 1 / 2, 1), (0, -1 / 2 - √2 / 2, 1), (1 + √2 / 2, 1 + √2 / 2)) -end +struct IMKG232b <: ARKAlgorithmName end +ARKTableau(::IMKG232b) = IMKGTableau([1 / 2, 1 / 2, 1], [0, -1 / 2 - √2 / 2, 1], [1 + √2 / 2, 1 + √2 / 2]) """ IMKG242a @@ -314,10 +335,8 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 4 explicit stages, and 2nd order accuracy. """ -struct IMKG242a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG242a) - IMKGTableau((1 / 4, 1 / 3, 1 / 2, 1), (0, 0, -1 / 2 + √2 / 2, 1), (0, 1 - √2 / 2, 1 - √2 / 2)) -end +struct IMKG242a <: ARKAlgorithmName end +ARKTableau(::IMKG242a) = IMKGTableau([1 / 4, 1 / 3, 1 / 2, 1], [0, 0, -1 / 2 + √2 / 2, 1], [0, 1 - √2 / 2, 1 - √2 / 2]) """ IMKG242b @@ -325,10 +344,8 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 4 explicit stages, and 2nd order accuracy. """ -struct IMKG242b <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG242b) - IMKGTableau((1 / 4, 1 / 3, 1 / 2, 1), (0, 0, -1 / 2 - √2 / 2, 1), (0, 1 + √2 / 2, 1 + √2 / 2)) -end +struct IMKG242b <: ARKAlgorithmName end +ARKTableau(::IMKG242b) = IMKGTableau([1 / 4, 1 / 3, 1 / 2, 1], [0, 0, -1 / 2 - √2 / 2, 1], [0, 1 + √2 / 2, 1 + √2 / 2]) """ IMKG243a @@ -336,10 +353,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 3 implicit stages, 4 explicit stages, and 2nd order accuracy. """ -struct IMKG243a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG243a) - IMKGTableau((1 / 4, 1 / 3, 1 / 2, 1), (0, 1 / 6, -√3 / 6, 1), (1 / 2 + √3 / 6, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6)) -end +struct IMKG243a <: ARKAlgorithmName end +ARKTableau(::IMKG243a) = + IMKGTableau([1 / 4, 1 / 3, 1 / 2, 1], [0, 1 / 6, -√3 / 6, 1], [1 / 2 + √3 / 6, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6]) # The paper uses √3/6 for α̂[3], which also seems to work. """ @@ -348,10 +364,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG252a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG252a) - IMKGTableau((1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), (0, 0, 0, -1 / 2 + √2 / 2, 1), (0, 0, 1 - √2 / 2, 1 - √2 / 2)) -end +struct IMKG252a <: ARKAlgorithmName end +ARKTableau(::IMKG252a) = + IMKGTableau([1 / 4, 1 / 6, 3 / 8, 1 / 2, 1], [0, 0, 0, -1 / 2 + √2 / 2, 1], [0, 0, 1 - √2 / 2, 1 - √2 / 2]) """ IMKG252b @@ -359,10 +374,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 2 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG252b <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG252b) - IMKGTableau((1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), (0, 0, 0, -1 / 2 - √2 / 2, 1), (0, 0, 1 + √2 / 2, 1 + √2 / 2)) -end +struct IMKG252b <: ARKAlgorithmName end +ARKTableau(::IMKG252b) = + IMKGTableau([1 / 4, 1 / 6, 3 / 8, 1 / 2, 1], [0, 0, 0, -1 / 2 - √2 / 2, 1], [0, 0, 1 + √2 / 2, 1 + √2 / 2]) """ IMKG253a @@ -370,14 +384,12 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 3 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG253a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG253a) - IMKGTableau( - (1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), - (0, 0, √3 / 4 * (1 - √3 / 3) * ((1 + √3 / 3)^2 - 2), √3 / 6, 1), - (0, 1 / 2 - √3 / 6, 1 / 2 - √3 / 6, 1 / 2 - √3 / 6), - ) -end +struct IMKG253a <: ARKAlgorithmName end +ARKTableau(::IMKG253a) = IMKGTableau( + [1 / 4, 1 / 6, 3 / 8, 1 / 2, 1], + [0, 0, √3 / 4 * (1 - √3 / 3) * ((1 + √3 / 3)^2 - 2), √3 / 6, 1], + [0, 1 / 2 - √3 / 6, 1 / 2 - √3 / 6, 1 / 2 - √3 / 6], +) # The paper uses 0.08931639747704086 for α̂[3], which also seems to work. """ @@ -386,14 +398,12 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 3 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG253b <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG253b) - IMKGTableau( - (1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), - (0, 0, √3 / 4 * (1 + √3 / 3) * ((1 - √3 / 3)^2 - 2), -√3 / 6, 1), - (0, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6), - ) -end +struct IMKG253b <: ARKAlgorithmName end +ARKTableau(::IMKG253b) = IMKGTableau( + [1 / 4, 1 / 6, 3 / 8, 1 / 2, 1], + [0, 0, √3 / 4 * (1 + √3 / 3) * ((1 - √3 / 3)^2 - 2), -√3 / 6, 1], + [0, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6], +) # The paper uses 1.2440169358562922 for α̂[3], which also seems to work. """ @@ -402,10 +412,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 4 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG254a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG254a) - IMKGTableau((1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), (0, -3 / 10, 5 / 6, -3 / 2, 1), (-1 / 2, 1, 1, 2)) -end +struct IMKG254a <: ARKAlgorithmName end +ARKTableau(::IMKG254a) = + IMKGTableau([1 // 4, 1 // 6, 3 // 8, 1 // 2, 1], [0, -3 // 10, 5 // 6, -3 // 2, 1], [-1 // 2, 1, 1, 2]) """ IMKG254b @@ -413,10 +422,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 4 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG254b <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG254b) - IMKGTableau((1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), (0, -1 / 20, 5 / 4, -1 / 2, 1), (-1 / 2, 1, 1, 1)) -end +struct IMKG254b <: ARKAlgorithmName end +ARKTableau(::IMKG254b) = + IMKGTableau([1 // 4, 1 // 6, 3 // 8, 1 // 2, 1], [0, -1 // 20, 5 // 4, -1 // 2, 1], [-1 // 2, 1, 1, 1]) """ IMKG254c @@ -424,10 +432,9 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 3, with 4 implicit stages, 5 explicit stages, and 2nd order accuracy. """ -struct IMKG254c <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG254c) - IMKGTableau((1 / 4, 1 / 6, 3 / 8, 1 / 2, 1), (0, 1 / 20, 5 / 36, 1 / 3, 1), (1 / 6, 1 / 6, 1 / 6, 1 / 6)) -end +struct IMKG254c <: ARKAlgorithmName end +ARKTableau(::IMKG254c) = + IMKGTableau([1 // 4, 1 // 6, 3 // 8, 1 // 2, 1], [0, 1 // 20, 5 // 36, 1 // 3, 1], [1 // 6, 1 // 6, 1 // 6, 1 // 6]) """ IMKG342a @@ -435,23 +442,21 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 4, with 2 implicit stages, 4 explicit stages, and 3rd order accuracy. """ -struct IMKG342a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG342a) - IMKGTableau( - (1 / 4, 2 / 3, 1 / 3, 3 / 4), - (0, 1 / 6 - √3 / 6, -1 / 6 - √3 / 6, 3 / 4), - (0, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6), - (0, 1 / 3, 1 / 4), - ) -end +struct IMKG342a <: ARKAlgorithmName end +ARKTableau(::IMKG342a) = IMKGTableau( + [1 / 4, 2 / 3, 1 / 3, 3 / 4], + [0, 1 / 6 - √3 / 6, -1 / 6 - √3 / 6, 3 / 4], + [0, 1 / 2 + √3 / 6, 1 / 2 + √3 / 6], + [0, 1 / 3, 1 / 4], +) # The paper and HOMME completely disagree on IMKG342a. Since the version in the # paper is not "342" (it appears to be "332"), the version from HOMME is used # here. The paper's version is # IMKGTableau( -# (0, 1/3, 1/3, 3/4), -# (0, -1/6 - √3/6, -1/6 - √3/6, 3/4), -# (0, 1/2 + √3/6, 1/2 + √3/6), -# (1/3, 1/3, 1/4), +# [0, 1/3, 1/3, 3/4], +# [0, -1/6 - √3/6, -1/6 - √3/6, 3/4], +# [0, 1/2 + √3/6, 1/2 + √3/6], +# [1/3, 1/3, 1/4], # ) """ @@ -460,26 +465,25 @@ end An IMEX ARK algorithm from [SVTG2019](@cite), Table 4, with 3 implicit stages, 4 explicit stages, and 3rd order accuracy. """ -struct IMKG343a <: IMEXARKAlgorithmName end -function IMEXTableau(::IMKG343a) - IMKGTableau((1 / 4, 2 / 3, 1 / 3, 3 / 4), (0, -1 / 3, -2 / 3, 3 / 4), (-1 / 3, 1, 1), (0, 1 / 3, 1 / 4)) -end +struct IMKG343a <: ARKAlgorithmName end +ARKTableau(::IMKG343a) = + IMKGTableau([1 // 4, 2 // 3, 1 // 3, 3 // 4], [0, -1 // 3, -2 // 3, 3 // 4], [-1 // 3, 1, 1], [0, 1 // 3, 1 // 4]) # The paper and HOMME completely disagree on IMKG353a, but neither version # is "353" (they appear to be "343" and "354", respectively). The paper's # version is # IMKGTableau( -# (1/4, 2/3, 1/3, 3/4), -# (0, -359/600, -559/600, 3/4), -# (-1.1678009811335388, 253/200, 253/200), -# (0, 1/3, 1/4), +# [1/4, 2/3, 1/3, 3/4], +# [0, -359/600, -559/600, 3/4], +# [-1.1678009811335388, 253/200, 253/200], +# [0, 1/3, 1/4], # ) # HOMME's version is # IMKGTableau( -# (-0.017391304347826087, -23/25, 5/3, 1/3, 3/4), -# (0.3075640504095504, -1.2990164859879263, 751/600, -49/60, 3/4), -# (-0.2981612530370581, 83/200, 83/200, 23/20), -# (1, -1, 1/3, 1/4), +# [-0.017391304347826087, -23/25, 5/3, 1/3, 3/4], +# [0.3075640504095504, -1.2990164859879263, 751/600, -49/60, 3/4], +# [-0.2981612530370581, 83/200, 83/200, 23/20], +# [1, -1, 1/3, 1/4], # ) # The version of IMKG354a in the paper is not "354" (it appears to be "253"), @@ -487,10 +491,10 @@ end # IMKG353a is mistakenly used to define IMKG354a, and the tableau for IMKG354a # is not specified). The paper's version is # IMKGTableau( -# (1/5, 1/5, 2/3, 1/3, 3/4), -# (0, 0, 11/30, -2/3, 3/4), -# (0, 2/4, 2/5, 1), -# (0, 0, 1/3, 1/4), +# [1//5, 1//5, 2//3, 1//3, 3//4], +# [0, 0, 11//30, -2//3, 3//4], +# [0, 2//4, 2//5, 1], +# [0, 0, 1//3, 1//4], # ) ################################################################################ @@ -500,10 +504,6 @@ end # The naming convention is SSPsσp, where s is the number of implicit stages, # σ is the number of explicit stages, and p is the order of accuracy. -abstract type IMEXSSPRKAlgorithmName <: IMEXARKAlgorithmName end - -default_constraint(::IMEXSSPRKAlgorithmName) = SSP() - """ SSP222 @@ -511,20 +511,15 @@ An IMEX SSPRK algorithm from [PR2005](@cite), with 2 implicit stages, 2 explicit stages, and 2nd order accuracy. Also called *SSP2(222)* in [GGHRUW2018](@cite). """ struct SSP222 <: IMEXSSPRKAlgorithmName end -function IMEXTableau(::SSP222) +function ARKTableau(::SSP222) γ = 1 - √2 / 2 - return IMEXTableau(; - a_exp = @SArray([ - 0 0 - 1 0 - ]), - b_exp = @SArray([1 / 2, 1 / 2]), - a_imp = @SArray([ + return ARKTableau(RKTableau(SSP22Heuns()), ButcherTableau( + [ γ 0 (1-2γ) γ - ]), - b_imp = @SArray([1 / 2, 1 / 2]) - ) + ], + [1 / 2, 1 / 2], + )) end """ @@ -534,22 +529,17 @@ An IMEX SSPRK algorithm from [PR2005](@cite), with 3 implicit stages, 2 explicit stages, and 2nd order accuracy. """ struct SSP322 <: IMEXSSPRKAlgorithmName end -function IMEXTableau(::SSP322) - return IMEXTableau(; - a_exp = @SArray([ - 0 0 0 - 0 0 0 - 0 1 0 - ]), - b_exp = @SArray([0, 1 / 2, 1 / 2]), - a_imp = @SArray([ - 1/2 0 0 - -1/2 1/2 0 - 0 1/2 1/2 - ]), - b_imp = @SArray([0, 1 / 2, 1 / 2]) - ) -end +ARKTableau(::SSP322) = ARKTableau( + PaddedTableau(RKTableau(SSP22Heuns())), + ButcherTableau( + [ + 1//2 0 0 + -1//2 1//2 0 + 0 1//2 1//2 + ], + [0, 1 // 2, 1 // 2], + ), +) """ SSP332 @@ -558,22 +548,16 @@ An IMEX SSPRK algorithm from [PR2005](@cite), with 3 implicit stages, 3 explicit stages, and 2nd order accuracy. Also called *SSP2(332)a* in [GGHRUW2018](@cite). """ struct SSP332 <: IMEXSSPRKAlgorithmName end -function IMEXTableau(::SSP332) +function ARKTableau(::SSP332) γ = 1 - √2 / 2 - return IMEXTableau(; - a_exp = @SArray([ - 0 0 0 - 1 0 0 - 1/4 1/4 0 - ]), - b_exp = @SArray([1 / 6, 1 / 6, 2 / 3]), - a_imp = @SArray([ + return ARKTableau(RKTableau(SSP33ShuOsher()), ButcherTableau( + [ γ 0 0 (1-2γ) γ 0 (1 / 2-γ) 0 γ - ]), - b_imp = @SArray([1 / 6, 1 / 6, 2 / 3]) - ) + ], + [1 / 6, 1 / 6, 2 / 3], + )) end """ @@ -587,22 +571,19 @@ is also called *SSP3(333)c* in [GGHRUW2018](@cite). Base.@kwdef struct SSP333{FT <: AbstractFloat} <: IMEXSSPRKAlgorithmName β::FT = 1 / 2 + √3 / 6 end -function IMEXTableau((; β)::SSP333) +function ARKTableau((; β)::SSP333) @assert β > 1 / 2 γ = (2β^2 - 3β / 2 + 1 / 3) / (2 - 4β) - return IMEXTableau(; - a_exp = @SArray([ - 0 0 0 - 1 0 0 - 1/4 1/4 0 - ]), - b_exp = @SArray([1 / 6, 1 / 6, 2 / 3]), - a_imp = @SArray([ - 0 0 0 - (4γ+2β) (1 - 4γ-2β) 0 - (1 / 2 - β-γ) γ β - ]), - b_imp = @SArray([1 / 6, 1 / 6, 2 / 3]) + return ARKTableau( + RKTableau(SSP33ShuOsher()), + ButcherTableau( + [ + 0 0 0 + (4γ+2β) (1 - 4γ-2β) 0 + (1 / 2 - β-γ) γ β + ], + [1 / 6, 1 / 6, 2 / 3], + ), ) end @@ -613,25 +594,21 @@ An IMEX SSPRK algorithm from [PR2005](@cite), with 4 implicit stages, 3 explicit stages, and 3rd order accuracy. Also called *SSP3(433)* in [GGHRUW2018](@cite). """ struct SSP433 <: IMEXSSPRKAlgorithmName end -function IMEXTableau(::SSP433) +function ARKTableau(::SSP433) α = 0.24169426078821 β = 0.06042356519705 η = 0.12915286960590 - return IMEXTableau(; - a_exp = @SArray([ - 0 0 0 0 - 0 0 0 0 - 0 1 0 0 - 0 1/4 1/4 0 - ]), - b_exp = @SArray([0, 1 / 6, 1 / 6, 2 / 3]), - a_imp = @SArray([ - α 0 0 0 - -α α 0 0 - 0 (1-α) α 0 - β η (1 / 2 - α - β-η) α - ]), - b_imp = @SArray([0, 1 / 6, 1 / 6, 2 / 3]) + return ARKTableau( + PaddedTableau(RKTableau(SSP33ShuOsher())), + ButcherTableau( + [ + α 0 0 0 + -α α 0 0 + 0 (1-α) α 0 + β η (1 / 2 - α - β-η) α + ], + [0, 1 / 6, 1 / 6, 2 / 3], + ), ) end @@ -645,29 +622,29 @@ end An IMEX ARK algorithm from [VSRUW2019](@cite), Appendix A, with 4 implicit stages, 5 explicit stages, and 3rd order accuracy. """ -struct DBM453 <: IMEXARKAlgorithmName end -function IMEXTableau(::DBM453) +struct DBM453 <: ARKAlgorithmName end +function ARKTableau(::DBM453) γ = 0.32591194130117247 - IMEXTableau(; - a_exp = @SArray( + return ARKTableau( + ButcherTableau( [ 0 0 0 0 0 0.10306208811591838 0 0 0 0 -0.94124866143519894 1.6626399742527356 0 0 0 -1.3670975201437765 1.3815852911016873 1.2673234025619065 0 0 -0.81287582068772448 0.81223739060505738 0.90644429603699305 0.094194134045674111 0 - ] + ], + [0.87795339639076675, -0.72692641526151547, 0.7520413715737272, -0.22898029400415088, γ], ), - b_exp = @SArray([0.87795339639076675, -0.72692641526151547, 0.7520413715737272, -0.22898029400415088, γ]), - a_imp = @SArray( + ButcherTableau( [ 0 0 0 0 0 -0.2228498531852541 γ 0 0 0 -0.46801347074080545 0.86349284225716961 γ 0 0 -0.46509906651927421 0.81063103116959553 0.61036726756832357 γ 0 0.87795339639076675 -0.72692641526151547 0.7520413715737272 -0.22898029400415088 γ - ] - ) + ], + ), ) end @@ -677,27 +654,25 @@ end An IMEX ARK algorithm from [GTBBS2020](@cite), section 4.1, with 5 implicit stages, 6 explicit stages, and 2nd order accuracy. """ -struct HOMMEM1 <: IMEXARKAlgorithmName end -function IMEXTableau(::HOMMEM1) - IMEXTableau(; - a_exp = @SArray([ - 0 0 0 0 0 0 - 1/5 0 0 0 0 0 - 0 1/5 0 0 0 0 - 0 0 1/3 0 0 0 - 0 0 0 1/2 0 0 - 0 0 0 0 1 0 - ]), - a_imp = @SArray([ - 0 0 0 0 0 0 - 0 1/5 0 0 0 0 - 0 0 1/5 0 0 0 - 0 0 0 1/3 0 0 - 0 0 0 0 1/2 0 - 5/18 5/18 0 0 0 8/18 - ]) - ) -end +struct HOMMEM1 <: ARKAlgorithmName end +ARKTableau(::HOMMEM1) = ARKTableau( + ButcherTableau([ + 0 0 0 0 0 0 + 1//5 0 0 0 0 0 + 0 1//5 0 0 0 0 + 0 0 1//3 0 0 0 + 0 0 0 1//2 0 0 + 0 0 0 0 1 0 + ]), + ButcherTableau([ + 0 0 0 0 0 0 + 0 1//5 0 0 0 0 + 0 0 1//5 0 0 0 + 0 0 0 1//3 0 0 + 0 0 0 0 1//2 0 + 5//18 5//18 0 0 0 8//18 + ]), +) """ ARK2GKC(; paper_version = false) @@ -707,23 +682,25 @@ stages, and 2nd order accuracy. If `paper_version = true`, the algorithm uses coefficients from the paper. Otherwise, it uses coefficients that make it more stable but less accurate. """ -Base.@kwdef struct ARK2GKC <: IMEXARKAlgorithmName +Base.@kwdef struct ARK2GKC <: ARKAlgorithmName paper_version::Bool = false end -function IMEXTableau((; paper_version)::ARK2GKC) +function ARKTableau((; paper_version)::ARK2GKC) a32 = paper_version ? 1 / 2 + √2 / 3 : 1 / 2 - IMEXTableau(; - a_exp = @SArray([ - 0 0 0 - (2-√2) 0 0 - (1-a32) a32 0 - ]), - b_exp = @SArray([√2 / 4, √2 / 4, 1 - √2 / 2]), - a_imp = @SArray([ + return ARKTableau( + ButcherTableau( + [ + 0 0 0 + (2-√2) 0 0 + (1-a32) a32 0 + ], + [√2 / 4, √2 / 4, 1 - √2 / 2], + ), + ButcherTableau([ 0 0 0 (1-√2 / 2) (1-√2 / 2) 0 √2/4 √2/4 (1-√2 / 2) - ]) + ]), ) end @@ -734,8 +711,8 @@ An IMEX ARK algorithm from [KC2019](@cite), Table 8, with 6 implicit stages, 7 explicit stages, and 4th order accuracy. Written as *ARK4(3)7L[2]SA₁* in the paper. """ -struct ARK437L2SA1 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARK437L2SA1) +struct ARK437L2SA1 <: ARKAlgorithmName end +function ARKTableau(::ARK437L2SA1) a_exp = zeros(Rational{Int64}, 7, 7) a_imp = zeros(Rational{Int64}, 7, 7) b = zeros(Rational{Int64}, 7) @@ -804,14 +781,7 @@ function IMEXTableau(::ARK437L2SA1) c[1] = 0 c[7] = 1 - IMEXTableau(; - a_exp = SArray{Tuple{7, 7}}(a_exp), - b_exp = SArray{Tuple{7}}(b), - c_exp = SArray{Tuple{7}}(c), - a_imp = SArray{Tuple{7, 7}}(a_imp), - b_imp = SArray{Tuple{7}}(b), - c_imp = SArray{Tuple{7}}(c), - ) + return ARKTableau(ButcherTableau(a_exp, b, c), ButcherTableau(a_imp, b, c)) end """ @@ -821,8 +791,8 @@ An IMEX ARK algorithm from [KC2019](@cite), Table 8, with 7 implicit stages, 8 explicit stages, and 5th order accuracy. Written as *ARK5(4)8L[2]SA₂* in the paper. """ -struct ARK548L2SA2 <: IMEXARKAlgorithmName end -function IMEXTableau(::ARK548L2SA2) +struct ARK548L2SA2 <: ARKAlgorithmName end +function ARKTableau(::ARK548L2SA2) a_exp = zeros(Rational{Int64}, 8, 8) a_imp = zeros(Rational{Int64}, 8, 8) b = zeros(Rational{Int64}, 8) @@ -904,12 +874,5 @@ function IMEXTableau(::ARK548L2SA2) c[1] = 0 c[8] = 1 - IMEXTableau(; - a_exp = SArray{Tuple{8, 8}}(a_exp), - b_exp = SArray{Tuple{8}}(b), - c_exp = SArray{Tuple{8}}(c), - a_imp = SArray{Tuple{8, 8}}(a_imp), - b_imp = SArray{Tuple{8}}(b), - c_imp = SArray{Tuple{8}}(c), - ) + return ARKTableau(ButcherTableau(a_exp, b, c), ButcherTableau(a_imp, b, c)) end diff --git a/src/solvers/explicit_tableaus.jl b/src/solvers/explicit_tableaus.jl deleted file mode 100644 index 57fe110c..00000000 --- a/src/solvers/explicit_tableaus.jl +++ /dev/null @@ -1,96 +0,0 @@ -export ExplicitTableau, ExplicitAlgorithm -export SSP22Heuns, SSP33ShuOsher, RK4 - -abstract type ERKAlgorithmName <: AbstractAlgorithmName end - -""" - ExplicitTableau(; a, b, c) - -A wrapper for an explicit Butcher tableau. Only `a` is a required argument; the -default value for `b` assumes that the algorithm is FSAL (first same as last), -and the default value for `c` assumes that it is internally consistent. The -matrix `a` must be strictly lower triangular. -""" -struct ExplicitTableau{A <: SPCO, B <: SPCO, C <: SPCO} - a::A # matrix of size s×s - b::B # vector of length s - c::C # vector of length s -end -ExplicitTableau(args...) = ExplicitTableau(map(x -> SparseCoeffs(x), args)...) -function ExplicitTableau(; a, b = a[end, :], c = vec(sum(a; dims = 2))) - @assert all(iszero, UpperTriangular(a)) - b, c = promote(b, c) # TODO: add generic promote_eltype - return ExplicitTableau(a, b, c) -end - -""" - ExplicitAlgorithm(tableau, [constraint]) - ExplicitAlgorithm(name, [constraint]) - -Constructs an explicit algorithm for solving ODEs, with an optional name and -constraint. The first constructor accepts any `ExplicitTableau` and an optional -constraint, leaving the algorithm unnamed. The second constructor automatically -determines the tableau and the default constraint from the algorithm name, -which must be an `ERKAlgorithmName`. - -Note that using an `ExplicitAlgorithm` is merely a shorthand for using an -`IMEXAlgorithm` with the same tableau for explicit and implicit tendencies (and -without Newton's method). -""" -ExplicitAlgorithm(tableau::ExplicitTableau, constraint = Unconstrained()) = - IMEXAlgorithm(constraint, nothing, IMEXTableau(tableau), nothing) -ExplicitAlgorithm(name::ERKAlgorithmName, constraint = default_constraint(name)) = - IMEXAlgorithm(constraint, name, IMEXTableau(name), nothing) - -IMEXTableau(name::ERKAlgorithmName) = IMEXTableau(ExplicitTableau(name)) -IMEXTableau((; a, b, c)::ExplicitTableau) = IMEXTableau(a, b, c, a, b, c) - -################################################################################ - -abstract type SSPRKAlgorithmName <: ERKAlgorithmName end - -default_constraint(::SSPRKAlgorithmName) = SSP() - -""" - SSP22Heuns - -An SSPRK algorithm from [SO1988](@cite), with 2 stages and 2nd order accuracy. -Also called Heun's method ([Heun1900](@cite)). -""" -struct SSP22Heuns <: SSPRKAlgorithmName end -function ExplicitTableau(::SSP22Heuns) - return ExplicitTableau(; a = @SArray([ - 0 0 - 1 0 - ]), b = @SArray([1 / 2, 1 / 2])) -end - -""" - SSP33ShuOsher - -An SSPRK algorithm from [SO1988](@cite), with 3 stages and 3rd order accuracy. -""" -struct SSP33ShuOsher <: SSPRKAlgorithmName end -function ExplicitTableau(::SSP33ShuOsher) - return ExplicitTableau(; a = @SArray([ - 0 0 0 - 1 0 0 - 1/4 1/4 0 - ]), b = @SArray([1 / 6, 1 / 6, 2 / 3])) -end - -""" - RK4 - -The RK4 algorithm from [SM2003](@cite), a Runge-Kutta method with -4 stages and 4th order accuracy. -""" -struct RK4 <: ERKAlgorithmName end -function ExplicitTableau(::RK4) - return ExplicitTableau(; a = @SArray([ - 0 0 0 0 - 1/2 0 0 0 - 0 1/2 0 0 - 0 0 1 0 - ]), b = @SArray([1 / 6, 1 / 3, 1 / 3, 1 / 6])) -end diff --git a/src/solvers/hard_coded_ars343.jl b/src/solvers/hard_coded_ars343.jl index f82ca418..79eeafb1 100644 --- a/src/solvers/hard_coded_ars343.jl +++ b/src/solvers/hard_coded_ars343.jl @@ -4,7 +4,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) (; u, p, t, dt, sol, alg) = integrator (; f) = sol.prob (; T_imp!, lim!, dss!) = f - (; post_explicit!, post_implicit!) = f + (; pre_implicit_solve!, post_stage!) = f (; tableau, newtons_method) = alg (; a_exp, b_exp, a_imp, b_imp, c_exp, c_imp) = tableau (; U, T_lim, T_exp, T_imp, temp, γ, newtons_method_cache) = cache @@ -34,7 +34,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) lim!(U, p, t_exp, u) @. U += dt * a_exp[i, 1] * T_exp[1] dss!(U, p, t_exp) - post_explicit!(U, p, t_exp) + pre_implicit_solve!(U, p, t_exp) @. temp = U # used in closures let i = i @@ -46,8 +46,8 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) implicit_equation_jacobian! = (jacobian, Ui) -> begin T_imp!.Wfact(jacobian, Ui, p, dt * a_imp[i, i], t_imp) end - call_post_implicit! = Ui -> begin - post_implicit!(Ui, p, t_imp) + call_post_stage! = Ui -> begin + post_stage!(Ui, p, t_imp) end solve_newton!( newtons_method, @@ -55,7 +55,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) U, implicit_equation_residual!, implicit_equation_jacobian!, - call_post_implicit!, + call_post_stage!, ) end @@ -70,7 +70,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) lim!(U, p, t_exp, u) @. U += dt * a_exp[i, 1] * T_exp[1] + dt * a_exp[i, 2] * T_exp[2] + dt * a_imp[i, 2] * T_imp[2] dss!(U, p, t_exp) - post_explicit!(U, p, t_exp) + pre_implicit_solve!(U, p, t_exp) @. temp = U # used in closures let i = i @@ -82,8 +82,8 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) implicit_equation_jacobian! = (jacobian, Ui) -> begin T_imp!.Wfact(jacobian, Ui, p, dt * a_imp[i, i], t_imp) end - call_post_implicit! = Ui -> begin - post_implicit!(Ui, p, t_imp) + call_post_stage! = Ui -> begin + post_stage!(Ui, p, t_imp) end solve_newton!( newtons_method, @@ -91,7 +91,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) U, implicit_equation_residual!, implicit_equation_jacobian!, - call_post_implicit!, + call_post_stage!, ) end @@ -110,7 +110,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) dt * a_imp[i, 2] * T_imp[2] + dt * a_imp[i, 3] * T_imp[3] dss!(U, p, t_exp) - post_explicit!(U, p, t_exp) + pre_implicit_solve!(U, p, t_exp) @. temp = U # used in closures let i = i @@ -122,8 +122,8 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) implicit_equation_jacobian! = (jacobian, Ui) -> begin T_imp!.Wfact(jacobian, Ui, p, dt * a_imp[i, i], t_imp) end - call_post_implicit! = Ui -> begin - post_implicit!(Ui, p, t_imp) + call_post_stage! = Ui -> begin + post_stage!(Ui, p, t_imp) end solve_newton!( newtons_method, @@ -131,7 +131,7 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) U, implicit_equation_residual!, implicit_equation_jacobian!, - call_post_implicit!, + call_post_stage!, ) end @@ -155,6 +155,6 @@ function step_u!(integrator, cache::IMEXARKCache, ::ARS343) dt * b_imp[3] * T_imp[3] + dt * b_imp[4] * T_imp[4] dss!(u, p, t_final) - post_explicit!(u, p, t_final) + pre_implicit_solve!(u, p, t_final) return u end diff --git a/src/solvers/imex_ark.jl b/src/solvers/imex_ark.jl deleted file mode 100644 index 4c2d24f9..00000000 --- a/src/solvers/imex_ark.jl +++ /dev/null @@ -1,181 +0,0 @@ -import NVTX - -has_jac(T_imp!) = - hasfield(typeof(T_imp!), :Wfact) && - hasfield(typeof(T_imp!), :jac_prototype) && - !isnothing(T_imp!.Wfact) && - !isnothing(T_imp!.jac_prototype) - -sdirk_error(name) = error("$(isnothing(name) ? "The given IMEXTableau" : name) \ - has implicit stages with distinct coefficients (it \ - is not SDIRK), and an update is required whenever a \ - stage has a different coefficient from the previous \ - stage. Do not update on the NewTimeStep signal when \ - using $(isnothing(name) ? "this tableau" : name).") - -struct IMEXARKCache{SCU, SCE, SCI, T, Γ, NMC} - U::SCU # sparse container of length s - T_lim::SCE # sparse container of length s - T_exp::SCE # sparse container of length s - T_imp::SCI # sparse container of length s - temp::T - γ::Γ - newtons_method_cache::NMC -end - -function init_cache(prob::DiffEqBase.AbstractODEProblem, alg::IMEXAlgorithm{Unconstrained}; kwargs...) - (; u0, f) = prob - (; T_imp!) = f - (; tableau, newtons_method) = alg - (; a_exp, b_exp, a_imp, b_imp) = tableau - s = length(b_exp) - inds = ntuple(i -> i, s) - inds_T_exp = filter(i -> !all(iszero, a_exp[:, i]) || !iszero(b_exp[i]), inds) - inds_T_imp = filter(i -> !all(iszero, a_imp[:, i]) || !iszero(b_imp[i]), inds) - U = zero(u0) - T_lim = SparseContainer(map(i -> zero(u0), collect(1:length(inds_T_exp))), inds_T_exp) - T_exp = SparseContainer(map(i -> zero(u0), collect(1:length(inds_T_exp))), inds_T_exp) - T_imp = SparseContainer(map(i -> zero(u0), collect(1:length(inds_T_imp))), inds_T_imp) - temp = zero(u0) - γs = unique(filter(!iszero, diag(a_imp))) - γ = length(γs) == 1 ? γs[1] : nothing # TODO: This could just be a constant. - jac_prototype = has_jac(T_imp!) ? T_imp!.jac_prototype : nothing - newtons_method_cache = - isnothing(T_imp!) || isnothing(newtons_method) ? nothing : allocate_cache(newtons_method, u0, jac_prototype) - return IMEXARKCache(U, T_lim, T_exp, T_imp, temp, γ, newtons_method_cache) -end - -# generic fallback -function step_u!(integrator, cache::IMEXARKCache) - (; u, p, t, dt, alg) = integrator - (; f) = integrator.sol.prob - (; post_explicit!, post_implicit!) = f - (; T_lim!, T_exp!, T_imp!, lim!, dss!) = f - (; tableau, newtons_method) = alg - (; a_exp, b_exp, a_imp, b_imp, c_exp, c_imp) = tableau - (; U, T_lim, T_exp, T_imp, temp, γ, newtons_method_cache) = cache - s = length(b_exp) - - if !isnothing(T_imp!) && !isnothing(newtons_method) - (; update_j) = newtons_method - jacobian = newtons_method_cache.j - if (!isnothing(jacobian)) && needs_update!(update_j, NewTimeStep(t)) - if γ isa Nothing - sdirk_error(name) - else - T_imp!.Wfact(jacobian, u, p, dt * γ, t) - end - end - end - - update_stage!(integrator, cache, ntuple(i -> i, Val(s))) - - t_final = t + dt - - if has_T_lim(f) # Update based on limited tendencies from previous stages - assign_fused_increment!(temp, u, dt, b_exp, T_lim, Val(s)) - lim!(temp, p, t_final, u) - @. u = temp - end - - # Update based on tendencies from previous stages - has_T_exp(f) && fused_increment!(u, dt, b_exp, T_exp, Val(s)) - isnothing(T_imp!) || fused_increment!(u, dt, b_imp, T_imp, Val(s)) - - dss!(u, p, t_final) - post_explicit!(u, p, t_final) - - return u -end - - -@inline update_stage!(integrator, cache, ::Tuple{}) = nothing -@inline update_stage!(integrator, cache, is::Tuple{Int}) = update_stage!(integrator, cache, first(is)) -@inline function update_stage!(integrator, cache, is::Tuple) - update_stage!(integrator, cache, first(is)) - update_stage!(integrator, cache, Base.tail(is)) -end -@inline function update_stage!(integrator, cache::IMEXARKCache, i::Int) - (; u, p, t, dt, alg) = integrator - (; f) = integrator.sol.prob - (; post_explicit!, post_implicit!) = f - (; T_exp_T_lim!, T_lim!, T_exp!, T_imp!, lim!, dss!) = f - (; tableau, newtons_method) = alg - (; a_exp, b_exp, a_imp, b_imp, c_exp, c_imp) = tableau - (; U, T_lim, T_exp, T_imp, temp, γ, newtons_method_cache) = cache - s = length(b_exp) - - t_exp = t + dt * c_exp[i] - t_imp = t + dt * c_imp[i] - - if has_T_lim(f) # Update based on limited tendencies from previous stages - assign_fused_increment!(U, u, dt, a_exp, T_lim, Val(i)) - i ≠ 1 && lim!(U, p, t_exp, u) - else - @. U = u - end - - # Update based on tendencies from previous stages - has_T_exp(f) && fused_increment!(U, dt, a_exp, T_exp, Val(i)) - isnothing(T_imp!) || fused_increment!(U, dt, a_imp, T_imp, Val(i)) - - i ≠ 1 && dss!(U, p, t_exp) - - if !(!isnothing(T_imp!) && !iszero(a_imp[i, i])) - i ≠ 1 && post_explicit!(U, p, t_imp) - else # Implicit solve - @assert !isnothing(newtons_method) - @. temp = U - i ≠ 1 && post_explicit!(U, p, t_imp) - # TODO: can/should we remove these closures? - implicit_equation_residual! = (residual, Ui) -> begin - T_imp!(residual, Ui, p, t_imp) - @. residual = temp + dt * a_imp[i, i] * residual - Ui - end - implicit_equation_jacobian! = (jacobian, Ui) -> T_imp!.Wfact(jacobian, Ui, p, dt * a_imp[i, i], t_imp) - call_post_implicit! = Ui -> begin - post_implicit!(Ui, p, t_imp) - end - call_post_implicit_last! = Ui -> begin - if (!all(iszero, a_imp[:, i]) || !iszero(b_imp[i])) && !iszero(a_imp[i, i]) - # If T_imp[i] is being treated implicitly, ensure that it - # exactly satisfies the implicit equation. - @. T_imp[i] = (Ui - temp) / (dt * a_imp[i, i]) - end - post_implicit!(Ui, p, t_imp) - end - - solve_newton!( - newtons_method, - newtons_method_cache, - U, - implicit_equation_residual!, - implicit_equation_jacobian!, - call_post_implicit!, - call_post_implicit_last!, - ) - end - - # We do not need to DSS U again because the implicit solve should - # give the same results for redundant columns (as long as the implicit - # tendency only acts in the vertical direction). - - if !all(iszero, a_imp[:, i]) || !iszero(b_imp[i]) - if iszero(a_imp[i, i]) && !isnothing(T_imp!) - # If its coefficient is 0, T_imp[i] is effectively being - # treated explicitly. - T_imp!(T_imp[i], U, p, t_imp) - end - end - - if !all(iszero, a_exp[:, i]) || !iszero(b_exp[i]) - if !isnothing(T_exp_T_lim!) - T_exp_T_lim!(T_exp[i], T_lim[i], U, p, t_exp) - else - isnothing(T_lim!) || T_lim!(T_lim[i], U, p, t_exp) - isnothing(T_exp!) || T_exp!(T_exp[i], U, p, t_exp) - end - end - - return nothing -end diff --git a/src/solvers/imex_ssprk.jl b/src/solvers/imex_ssprk.jl deleted file mode 100644 index 0395991e..00000000 --- a/src/solvers/imex_ssprk.jl +++ /dev/null @@ -1,190 +0,0 @@ -struct IMEXSSPRKCache{U, SCI, B, Γ, NMC} - U::U - U_exp::U - U_lim::U - T_lim::U - T_exp::U - T_imp::SCI # sparse container of length s - temp::U - β::B - γ::Γ - newtons_method_cache::NMC -end - -function init_cache(prob::DiffEqBase.AbstractODEProblem, alg::IMEXAlgorithm{SSP}; kwargs...) - (; u0, f) = prob - (; T_imp!) = f - (; tableau, newtons_method) = alg - (; a_exp, b_exp, a_imp, b_imp) = tableau - s = length(b_exp) - inds = ntuple(i -> i, s) - inds_T_imp = filter(i -> !all(iszero, a_imp[:, i]) || !iszero(b_imp[i]), inds) - U = similar(u0) - U_exp = similar(u0) - T_lim = similar(u0) - T_exp = similar(u0) - U_lim = similar(u0) - T_imp = SparseContainer(map(i -> similar(u0), collect(1:length(inds_T_imp))), inds_T_imp) - temp = similar(u0) - â_exp = SparseCoeffs(vcat(a_exp.coeffs, b_exp.coeffs')) - β = SparseCoeffs(diag(â_exp, -1)) - for i in 1:length(β) - if â_exp.coeffs[(i + 1):end, i] != cumprod(β.coeffs[i:end]) - error("The SSP IMEXAlgorithm currently only supports an \ - IMEXTableau that specifies a \"low-storage\" IMEX SSPRK \ - algorithm, where the canonical Shu-Osher representation of \ - the i-th explicit stage for i > 1 must have the form U[i] = \ - (1 - β[i-1]) * u + β[i-1] * (U[i-1] + dt * T_exp(U[i-1])). \ - So, it must be possible to express vcat(a_exp, b_exp') as\n \ - 0 0 0 …\n \ - β[1] 0 0 …\n \ - β[1] * β[2] β[2] 0 …\n \ - β[1] * β[2] * β[3] β[2] * β[3] β[3] …\n \ - ⋮ ⋮ ⋮ ⋱\n \ - The given IMEXTableau does not satisfy this property.") - end - end - γs = unique(filter(!iszero, diag(a_imp))) - γ = length(γs) == 1 ? γs[1] : nothing # TODO: This could just be a constant. - jac_prototype = has_jac(T_imp!) ? T_imp!.jac_prototype : nothing - newtons_method_cache = - isnothing(T_imp!) || isnothing(newtons_method) ? nothing : allocate_cache(newtons_method, u0, jac_prototype) - return IMEXSSPRKCache(U, U_exp, U_lim, T_lim, T_exp, T_imp, temp, β, γ, newtons_method_cache) -end - -function step_u!(integrator, cache::IMEXSSPRKCache) - (; u, p, t, dt, alg) = integrator - (; f) = integrator.sol.prob - (; post_explicit!, post_implicit!) = f - (; T_exp_T_lim!, T_lim!, T_exp!, T_imp!, lim!, dss!) = f - (; tableau, newtons_method) = alg - (; a_imp, b_imp, c_exp, c_imp) = tableau - (; U, U_lim, U_exp, T_lim, T_exp, T_imp, temp, β, γ, newtons_method_cache) = cache - s = length(b_imp) - - if !isnothing(T_imp!) && !isnothing(newtons_method) - (; update_j) = newtons_method - jacobian = newtons_method_cache.j - if (!isnothing(jacobian)) && needs_update!(update_j, NewTimeStep(t)) - if γ isa Nothing - sdirk_error(name) - else - T_imp!.Wfact(jacobian, u, p, dt * γ, t) - end - end - end - - @. U = u - - for i in 1:s - t_exp = t + dt * c_exp[i] - t_imp = t + dt * c_imp[i] - - if i == 1 - @. U_exp = u - elseif !iszero(β[i - 1]) - if has_T_lim(f) - @. U_lim = U_exp + dt * T_lim - lim!(U_lim, p, t_exp, U_exp) - @. U_exp = U_lim - end - if has_T_exp(f) - @. U_exp += dt * T_exp - end - @. U_exp = (1 - β[i - 1]) * u + β[i - 1] * U_exp - end - - i ≠ 1 && dss!(U_exp, p, t_exp) - - @. U = U_exp - if !isnothing(T_imp!) # Update based on implicit tendencies from previous stages - for j in 1:(i - 1) - iszero(a_imp[i, j]) && continue - @. U += dt * a_imp[i, j] * T_imp[j] - end - end - - if !(!isnothing(T_imp!) && !iszero(a_imp[i, i])) - i ≠ 1 && post_explicit!(U, p, t_imp) - else # Implicit solve - @assert !isnothing(newtons_method) - @. temp = U - post_explicit!(U, p, t_imp) - # TODO: can/should we remove these closures? - implicit_equation_residual! = (residual, Ui) -> begin - T_imp!(residual, Ui, p, t_imp) - @. residual = temp + dt * a_imp[i, i] * residual - Ui - end - implicit_equation_jacobian! = (jacobian, Ui) -> T_imp!.Wfact(jacobian, Ui, p, dt * a_imp[i, i], t_imp) - call_post_implicit! = Ui -> begin - post_implicit!(Ui, p, t_imp) - end - call_post_implicit_last! = - Ui -> begin - if (!all(iszero, a_imp[:, i]) || !iszero(b_imp[i])) && !iszero(a_imp[i, i]) - # If T_imp[i] is being treated implicitly, ensure that it - # exactly satisfies the implicit equation. - @. T_imp[i] = (Ui - temp) / (dt * a_imp[i, i]) - end - post_implicit!(Ui, p, t_imp) - end - - solve_newton!( - newtons_method, - newtons_method_cache, - U, - implicit_equation_residual!, - implicit_equation_jacobian!, - call_post_implicit!, - call_post_implicit_last!, - ) - end - - # We do not need to DSS U again because the implicit solve should - # give the same results for redundant columns (as long as the implicit - # tendency only acts in the vertical direction). - - if !all(iszero, a_imp[:, i]) || !iszero(b_imp[i]) - if iszero(a_imp[i, i]) && !isnothing(T_imp!) - # If its coefficient is 0, T_imp[i] is effectively being - # treated explicitly. - T_imp!(T_imp[i], U, p, t_imp) - end - end - - if !iszero(β[i]) - if !isnothing(T_exp_T_lim!) - T_exp_T_lim!(T_lim, T_exp, U, p, t_exp) - else - isnothing(T_lim!) || T_lim!(T_lim, U, p, t_exp) - isnothing(T_exp!) || T_exp!(T_exp, U, p, t_exp) - end - end - end - - t_final = t + dt - - if !iszero(β[s]) - if has_T_lim(f) - @. U_lim = U_exp + dt * T_lim - lim!(U_lim, p, t_final, U_exp) - @. U_exp = U_lim - end - if has_T_exp(f) - @. U_exp += dt * T_exp - end - @. u = (1 - β[s]) * u + β[s] * U_exp - end - - if !isnothing(T_imp!) # Update based on implicit tendencies from previous stages - for j in 1:s - iszero(b_imp[j]) && continue - @. u += dt * b_imp[j] * T_imp[j] - end - end - - dss!(u, p, t_final) - post_explicit!(u, p, t_final) - - return u -end diff --git a/src/solvers/lsrk.jl b/src/solvers/lsrk.jl index 95693963..2afb92d1 100644 --- a/src/solvers/lsrk.jl +++ b/src/solvers/lsrk.jl @@ -27,7 +27,7 @@ struct LowStorageRungeKutta2NTableau{T <: NTuple} "low storage RK coefficient vector C (time scaling)" C::T end -n_stages(::LowStorageRungeKutta2NTableau{T}) where {T} = n_stages_ntuple(T) +n_stages(tableau::LowStorageRungeKutta2NTableau) = length(tableau.A) struct LowStorageRungeKutta2NIncCache{T <: LowStorageRungeKutta2NTableau, A} tableau::T diff --git a/src/solvers/mis.jl b/src/solvers/mis.jl index 14e636cd..257624cd 100644 --- a/src/solvers/mis.jl +++ b/src/solvers/mis.jl @@ -27,7 +27,7 @@ struct MultirateInfinitesimalStepTableau{T2 <: T2Type, T1 <: T1Type} c::T1 c̃::T1 end -n_stages(::MultirateInfinitesimalStepTableau{T2, T1}) where {T2, T1} = n_stages_ntuple(T1) +n_stages(tableau::MultirateInfinitesimalStepTableau) = length(tableau.d) function MultirateInfinitesimalStepTableau(α, β, γ) d = SVector(sum(β, dims = 2)) # KW2014 (2) diff --git a/src/solvers/rk_tableaus.jl b/src/solvers/rk_tableaus.jl new file mode 100644 index 00000000..5eb28016 --- /dev/null +++ b/src/solvers/rk_tableaus.jl @@ -0,0 +1,235 @@ +export SSP22Heuns, SSP33ShuOsher, RK4 + +is_strictly_lower_triangular(matrix) = all(iszero, UpperTriangular(matrix)) +is_lower_triangular(matrix) = all(iszero, UpperTriangular(matrix) - Diagonal(matrix)) + +""" + RKTableau(a, b, c, d, Γ, α) + +A container for all of the information required to formulate a Runge-Kutta (RK) +timestepping method. The arrays `a`, `b`, and `c` comprise the Butcher tableau +of the method, while `α` is either `nothing` or the first matrix of the method's +canonical Shu-Osher formulation (if at least one such formulation is available). + +`Γ` is an additional tableau that can be provided. For purely RK schemes, this +is just the diagonal of `a`. For Rosenbrock schemes, it is a matrix with the +same shape as `a`. + +`d` is also an additional time-related tableau. For purely RK schemes, this is a +copy of `c`. For Rosenbrock schemes, this is typically used for evaluating +explicit time derivatives. +""" +struct RKTableau{FT, AN <: Union{Nothing, Array{FT, 2}}} + a::Array{FT, 2} + b::Array{FT, 1} + c::Array{FT, 1} + d::Array{FT, 1} + Γ::Array{FT, 2} + α::AN +end +function RKTableau(a, b, c, d, Γ, α) + s = length(b) + size(a) == (s, s) || error("invalid Butcher tableau matrix") + size(Γ) == (s, s) || error("invalid Γ tableau matrix") + size(b) == size(c) == size(d) == (s,) || error("invalid Butcher tableau vector") + + is_lower_triangular(a) || error("Butcher tableau matrix is not ERK or DIRK") + is_lower_triangular(Γ) || error("Γ tableau matrix is not lower triangular") + + sum(b) == 1 || @warn "tableau does not obey 1st order consistency condition" + vec(sum(a; dims = 2)) == c || @warn "tableau is not internally consistent" + + if !isnothing(α) + size(α) == (s + 1, s) || error("invalid Shu-Osher form matrix") + + is_lower_triangular(α[1:s, :]) || error("Shu-Osher form matrix is not ERK or DIRK") + if is_strictly_lower_triangular(a) + is_strictly_lower_triangular(α[1:s, :]) || + error("Shu-Osher form matrix is DIRK while Butcher tableau matrix is ERK") + end + + vec(sum(α; dims = 2)) in (vcat([0], ones(s)), vcat([0, 0], ones(s - 1))) || + error("Shu-Osher form is not canonical") + + # TODO: Add support for applying limiters in reverse (negative coefficients in α). + all(>=(0), α) || error("Shu-Osher form matrix has negative coefficients") + end + + FT = Base.promote_eltype(a, b, c, d, Γ, (isnothing(α) ? () : (α,))...) + return RKTableau{FT, typeof(α)}(a, b, c, d, Γ, α) +end + +Base.eltype(::Type{RKTableau{FT}}) where {FT} = FT + +Base.promote_rule(::Type{<:RKTableau{FT1}}, ::Type{<:RKTableau{FT2}}) where {FT1, FT2} = + RKTableau{promote_type(FT1, FT2)} + +function Base.convert(::Type{RKTableau{FT}}, tableau::RKTableau) where {FT} + (; a, b, c, d, Γ, α) = tableau + return RKTableau{FT, isnothing(α) ? Nothing : Array{FT, 2}}(a, b, c, d, Γ, α) +end + +""" + ButcherTableau(a, [b], [c], [d], [Γ]) + +Constructs an `RKTableau` without a Shu-Osher formulation, under the default +assumptions that it is first-same-as-last (FSAL) and internally consistent. +""" +ButcherTableau(a, b = a[end, :], c = vec(sum(a; dims = 2)), d = copy(c), Γ = diagm(diag(a))) = RKTableau(a, b, c, d, Γ, nothing) + +""" + RosenbrockTableau(a_square, b, Γ) + +Constructs an `RKTableau` with a Rosenbrock tableau. +""" +RosenbrockTableau(Γ, a, b = a[end, :], c = vec(sum(a; dims = 2)), d = vec(sum(Γ; dims = 2))) = RKTableau(a, b, c, d, Γ, nothing) + +""" + ShuOsherTableau(α, a, [b], [c], [d], [Γ]) + +Constructs an `RKTableau` with a canonical Shu-Osher formulation whose first +matrix is given by `α`, under the default assumptions that it is +first-same-as-last (FSAL) and internally consistent. +""" +ShuOsherTableau(α, a, b = a[end, :], c = vec(sum(a; dims = 2)), d = copy(c), Γ = diagm(diag(a))) = RKTableau(a, b, c, d, Γ, α) + +""" + PaddedTableau(tableau) + +Constructs an `RKTableau` that is identical to the given `RKTableau`, but with +an additional "empty" stage at the beginning of the method that leaves the +initial state unmodified. +""" +function PaddedTableau(tableau) + s = length(tableau.b) + return RKTableau( + vcat(zeros(s + 1)', hcat(zeros(s), tableau.a)), + vcat([0], tableau.b), + vcat([0], tableau.c), + vcat([0], tableau.d), + vcat(zeros(s + 1)', hcat(zeros(s), tableau.Γ)), + isnothing(tableau.α) ? nothing : vcat(zeros(s + 1)', hcat(zeros(s + 1), tableau.α)), + ) +end + +""" + is_ERK(tableau) + +Checks whether an `RKTableau` is explicit; i.e., whether its coefficient +matrices are strictly lower triangular. +""" +is_ERK(tableau) = is_strictly_lower_triangular(tableau.a) + +""" + is_DIRK(tableau) + +Checks whether an `RKTableau` is diagonally implicit; i.e., whether its +coefficient matrices are non-strictly lower triangular. +""" +is_DIRK(tableau) = is_lower_triangular(tableau.a) && !is_strictly_lower_triangular(tableau.a) + +""" + RKAlgorithmName + +An `AbstractAlgorithmName` with a method of the form `RKTableau(name)`. +""" +abstract type RKAlgorithmName <: AbstractAlgorithmName end + +""" + SSPRKAlgorithmName + +An `RKAlgorithmName` whose tableau has a canonical Shu-Osher formulation. +""" +abstract type SSPRKAlgorithmName <: RKAlgorithmName end + +################################################################################ + +""" + SSP22Heuns + +An SSPRK algorithm from [SO1988](@cite), with 2 stages and 2nd order accuracy. +Also called Heun's method ([Heun1900](@cite)). +""" +struct SSP22Heuns <: SSPRKAlgorithmName end +RKTableau(::SSP22Heuns) = ShuOsherTableau( + [ + 0 0 + 1 0 + 1//2 1//2 + ], + [ + 0 0 + 1 0 + ], + [1 // 2, 1 // 2], +) + +""" + SSP33ShuOsher + +An SSPRK algorithm from [SO1988](@cite), with 3 stages and 3rd order accuracy. +""" +struct SSP33ShuOsher <: SSPRKAlgorithmName end +RKTableau(::SSP33ShuOsher) = ShuOsherTableau( + [ + 0 0 0 + 1 0 0 + 3//4 1//4 0 + 1//3 0 2//3 + ], + [ + 0 0 0 + 1 0 0 + 1//4 1//4 0 + ], + [1 // 6, 1 // 6, 2 // 3], +) + +""" + RK4 + +The RK4 algorithm from [SM2003](@cite), a Runge-Kutta method with +4 stages and 4th order accuracy. +""" +struct RK4 <: RKAlgorithmName end +RKTableau(::RK4) = ButcherTableau( + [ + 0 0 0 0 + 1//2 0 0 0 + 0 1//2 0 0 + 0 0 1 0 + ], + [1 // 6, 1 // 3, 1 // 3, 1 // 6], +) + +abstract type RosenbrockAlgorithmName <: AbstractAlgorithmName end + +""" + SSPKnoth + +`SSPKnoth` is a third-order Rosenbrock method developed by Oswald Knoth. When +integrating an implicit tendency, this reduces to a second-order method because +it only performs an approximate implicit solve on each stage. + +The coefficients are the same as in `CGDycore.jl`, except that for C we add the +diagonal elements too. Note, however, that the elements on the diagonal of C do +not really matter because C is only used in its lower triangular part. We add them +mostly to match literature on the subject +""" +struct SSPKnoth <: RosenbrockAlgorithmName end + +function RKTableau(::SSPKnoth) + return RosenbrockTableau( + [ + 1 0 0 + 0 1 0 + -3//4 -3//4 1 + ], + [ + 0 0 0 + 1 0 0 + 1//4 1//4 0 + ], + [1 // 6, 1 // 6, 2 // 3], + ) +end diff --git a/src/solvers/rosenbrock.jl b/src/solvers/rosenbrock.jl index b4922f6b..5a50297b 100644 --- a/src/solvers/rosenbrock.jl +++ b/src/solvers/rosenbrock.jl @@ -1,13 +1,11 @@ -export SSPKnoth +export OldSSPKnoth using StaticArrays import DiffEqBase import LinearAlgebra: ldiv!, diagm import LinearAlgebra -abstract type RosenbrockAlgorithmName <: AbstractAlgorithmName end - """ - RosenbrockTableau{N, RT, N²} + OldRosenbrockTableau{N, RT, N²} Contains everything that defines a Rosenbrock-type method. @@ -15,7 +13,7 @@ Contains everything that defines a Rosenbrock-type method. Refer to the documentation for the precise meaning of the symbols below. """ -struct RosenbrockTableau{N} +struct OldRosenbrockTableau{N} """A = α Γ⁻¹""" A::SMatrix{N, N} """Tableau used for the time-dependent part""" @@ -28,14 +26,14 @@ struct RosenbrockTableau{N} m::SMatrix{N, 1} end -function RosenbrockTableau(α::SMatrix{N, N}, Γ::SMatrix{N, N}, b::SMatrix{1, N}) where {N} +function OldRosenbrockTableau(α::SMatrix{N, N}, Γ::SMatrix{N, N}, b::SMatrix{1, N}) where {N} A = α / Γ invΓ = inv(Γ) diag_invΓ = SMatrix{N, N}(diagm([invΓ[i, i] for i in 1:N])) # C is diag(γ₁₁⁻¹, γ₂₂⁻¹, ...) - Γ⁻¹ C = diag_invΓ .- inv(Γ) m = b / Γ - return RosenbrockTableau{N}(A, α, C, Γ, m) + return OldRosenbrockTableau{N}(A, α, C, Γ, m) end """ @@ -43,7 +41,7 @@ end Constructs a Rosenbrock algorithm for solving ODEs. """ -struct RosenbrockAlgorithm{T <: RosenbrockTableau} <: ClimaTimeSteppers.DistributedODEAlgorithm +struct RosenbrockAlgorithm{T <: OldRosenbrockTableau} <: ClimaTimeSteppers.DistributedODEAlgorithm tableau::T end @@ -119,7 +117,7 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} T_exp_lim! = int.sol.prob.f.T_exp_T_lim! tgrad! = isnothing(T_imp!) ? nothing : T_imp!.tgrad - (; post_explicit!, post_implicit!, dss!) = int.sol.prob.f + (; post_stage!, dss!) = int.sol.prob.f # TODO: This is only valid when Γ[i, i] is constant, otherwise we have to # move this in the for loop @@ -146,10 +144,7 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} U .+= A[i, j] .* k[j] end - if !isnothing(post_implicit!) - # NOTE: post_implicit! is a misnomer - post_implicit!(U, p, t + αi * dt) - end + post_stage!(U, p, t + αi * dt) if !isnothing(T_imp!) T_imp!(fU_imp, U, p, t + αi * dt) @@ -201,18 +196,20 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} end """ - SSPKnoth + OldSSPKnoth -`SSPKnoth` is a second-order Rosenbrock method developed by Oswald Knoth. +`OldSSPKnoth` is a third-order Rosenbrock method developed by Oswald Knoth. When +integrating an implicit tendency, this reduces to a second-order method because +it only performs an approximate implicit solve on each stage. The coefficients are the same as in `CGDycore.jl`, except that for C we add the diagonal elements too. Note, however, that the elements on the diagonal of C do not really matter because C is only used in its lower triangular part. We add them mostly to match literature on the subject """ -struct SSPKnoth <: RosenbrockAlgorithmName end +struct OldSSPKnoth <: RosenbrockAlgorithmName end -function tableau(::SSPKnoth) +function tableau(::OldSSPKnoth) N = 3 α = @SMatrix [ 0 0 0 @@ -225,5 +222,5 @@ function tableau(::SSPKnoth) 0 1 0 -3/4 -3/4 1 ] - return RosenbrockTableau(α, Γ, b) + return OldRosenbrockTableau(α, Γ, b) end diff --git a/src/solvers/wickerskamarock.jl b/src/solvers/wickerskamarock.jl index b1b8568a..02011013 100644 --- a/src/solvers/wickerskamarock.jl +++ b/src/solvers/wickerskamarock.jl @@ -18,7 +18,7 @@ struct WickerSkamarockRungeKuttaTableau{T <: NTuple} "Time-scaling coefficients c" c::T end -n_stages(::WickerSkamarockRungeKuttaTableau{T}) where {T} = n_stages_ntuple(T) +n_stages(tableau::WickerSkamarockRungeKuttaTableau) = length(tableau.c) struct WickerSkamarockRungeKuttaCache{T <: WickerSkamarockRungeKuttaTableau, A} tableau::T diff --git a/src/sparse_containers.jl b/src/sparse_containers.jl deleted file mode 100644 index a41134a2..00000000 --- a/src/sparse_containers.jl +++ /dev/null @@ -1,40 +0,0 @@ - -""" - SparseContainer(compressed_data, sparse_index_map) - -A compact container that allows dense-like -indexing into a sparse, uniform, container. - -# Example - -```julia -using Test -a1 = ones(3) .* 1 -a2 = ones(3) .* 2 -a3 = ones(3) .* 3 -a4 = ones(3) .* 4 -v = SparseContainer((a1,a2,a3,a4), (1,3,5,7)) -@test v[1] == ones(3) .* 1 -@test v[3] == ones(3) .* 2 -@test v[5] == ones(3) .* 3 -@test v[7] == ones(3) .* 4 -``` -""" -struct SparseContainer{SIM, T} - data::T - function SparseContainer(compressed_data::T, sparse_index_map::Tuple) where {T} - @assert all(map(x -> eltype(compressed_data) .== typeof(x), compressed_data)) - SIM = zeros(Int, maximum(sparse_index_map)) - for i in 1:length(SIM) - i in sparse_index_map || continue - SIM[i] = findfirst(k -> k == i, sparse_index_map) - end - SIM = Tuple(SIM) - return new{SIM, T}(compressed_data) - end -end - -Base.parent(sc::SparseContainer) = sc.data -@inline function Base.getindex(sc::SparseContainer{SIM}, i::Int) where {SIM} - return Base.getindex(sc.data, SIM[i]) -end diff --git a/src/utilities/fused_increment.jl b/src/utilities/fused_increment.jl deleted file mode 100644 index 07f8b087..00000000 --- a/src/utilities/fused_increment.jl +++ /dev/null @@ -1,148 +0,0 @@ -""" - fused_increment(u, dt, sc::SparseCoeffs, tend, ::Val{i}) where {i} - -Returns a broadcasted object in the form - - `u + ∑ⱼ dt scⱼ tendⱼ for j in 1:i` - or - `u + ∑ⱼ dt scᵢⱼ tendⱼ for j in 1:(i-1)` - -depending on the dimensions of the coefficients in `sc`. The -broadcasted object drops zero coefficients from the expression -at compile-time using the mask `mask` (made from `SparseCoeffs(coeffs)`). - -Returns `u` when `i ≤ 1` or if the mask is all true (all coefficients are zero). - - -# Example loops that this is fusing: - -For 2D coefficients case -```julia -for j in 1:(i - 1) - iszero(a_imp[i, j]) && continue - @. U += dt * a_imp[i, j] * T_imp[j] -end - -For 1D coefficients case -```julia -for j in 1:s - iszero(b_exp[j]) && continue - @. temp += dt * b_exp[j] * T_lim[j] -end -``` -""" -function fused_increment end - -@inline fused_increment(u, dt, sc, tend, v) = fused_increment(u, dt, sc, tend, v, get_S(sc)) - -# =================================================== ij case (S::NTuple{2}) -# recursion: _rfused_increment_j always returns a Tuple -@inline _rfused_increment_ij(js::Tuple{}, i, u, dt, sc::SparseCoeffs, tend) = () - -@inline _rfused_increment_ij(js::Tuple{Int}, i, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - _rfused_increment_ij(js[1], i, u, dt, sc, tend) - -@inline _rfused_increment_ij(j::Int, i, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - if zero_coeff(T, i, j) - () - else - (Base.Broadcast.broadcasted(*, dt * sc[i, j], tend[j]),) - end - -@inline _rfused_increment_ij(js::Tuple, i, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - (_rfused_increment_ij(first(js), i, u, dt, sc, tend)..., _rfused_increment_ij(Base.tail(js), i, u, dt, sc, tend)...) - -# top-level function -@inline function _fused_increment_ij(js::Tuple, i, u, dt, sc::T, tend) where {T <: SparseCoeffs} - return if all(j -> zero_coeff(T, i, j), js) - u - else - Base.Broadcast.broadcasted( - +, - u, - _rfused_increment_ij(js, i, u, dt, sc, tend)..., # recurse... - ) - end -end - -# top-level function, if the tuple is empty, just return u -@inline _fused_increment_ij(js::Tuple{}, i, u, dt, sc::SparseCoeffs, tend) = u - -# wrapper ij case (S::NTuple{2}) -@inline fused_increment(u, dt, sc::SparseCoeffs, tend, ::Val{i}, ::NTuple{2}) where {i} = - _fused_increment_ij(ntuple(j -> j, Val(i - 1)), i, u, dt, sc, tend) - -# =================================================== j case (S::NTuple{1}) -# recursion: _rfused_increment_j always returns a Tuple -@inline _rfused_increment_j(js::Tuple{}, u, dt, sc::SparseCoeffs, tend) = () - -@inline _rfused_increment_j(js::Tuple{Int}, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - _rfused_increment_j(js[1], u, dt, sc, tend) - -@inline _rfused_increment_j(j::Int, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - if zero_coeff(T, j) - () - else - (Base.Broadcast.broadcasted(*, dt * sc[j], tend[j]),) - end - -@inline _rfused_increment_j(js::Tuple, u, dt, sc::T, tend) where {T <: SparseCoeffs} = - (_rfused_increment_j(first(js), u, dt, sc, tend)..., _rfused_increment_j(Base.tail(js), u, dt, sc, tend)...) - -# top-level function -@inline function _fused_increment_j(js::Tuple, u, dt, sc::T, tend) where {T <: SparseCoeffs} - return if all(j -> zero_coeff(T, j), js) - u - else - Base.Broadcast.broadcasted( - +, - u, - _rfused_increment_j(js, u, dt, sc, tend)..., # recurse... - ) - end -end - -# top-level function, if the tuple is empty, just return u -@inline _fused_increment_j(js::Tuple{}, u, dt, sc::SparseCoeffs, tend) = u - -# wrapper j case (S::NTuple{1}) -@inline fused_increment(u, dt, sc::SparseCoeffs, tend, ::Val{s}, ::NTuple{1}) where {s} = - _fused_increment_j(ntuple(i -> i, s), u, dt, sc, tend) - -""" - fused_increment!(u, dt, sc, tend, v) - -Calls [`fused_increment`](@ref) and materializes -a broadcast expression in the form: - - `@. u += ∑ⱼ dt scⱼ tendⱼ` - -In the edge case (coeffs are zero, `j` range is empty), -this lowers to `nothing` (no-op) -""" -@inline function fused_increment!(u, dt, sc, tend, v) - bc = fused_increment(u, dt, sc, tend, v) - if bc isa Base.Broadcast.Broadcasted # Only material if not trivial assignment - Base.Broadcast.materialize!(u, bc) - end - nothing -end - -""" - assign_fused_increment!(U, u, dt, sc, tend, v) - -Calls [`fused_increment`](@ref) and materializes -a broadcast expression in the form: - - `@. u += ∑ⱼ dt scⱼ tendⱼ` - -In the edge case (coeffs are zero, `j` range is empty), -this lowers to - - `@. U = u` -""" -@inline function assign_fused_increment!(U, u, dt, sc, tend, v) - bc = fused_increment(u, dt, sc, tend, v) - Base.Broadcast.materialize!(U, bc) - return nothing -end diff --git a/src/utilities/sparse_coeffs.jl b/src/utilities/sparse_coeffs.jl deleted file mode 100644 index d3c5e014..00000000 --- a/src/utilities/sparse_coeffs.jl +++ /dev/null @@ -1,31 +0,0 @@ -""" - SparseCoeffs(coefficients) - -A mask for coefficients. Supports `getindex(::SparseCoeffs, ijk...)` -that forwards to coefficients, and `getindex(::Type{SparseCoeffs}, ijk...)` -that forwards (at compile time) to the mask, which behaves as a -BitArray of the coefficients. -""" -struct SparseCoeffs{S, m, C} - coeffs::C - function SparseCoeffs(coeffs::C) where {C} - m = BitArray(iszero.(coeffs)) - return new{size(m), Tuple(m), C}(coeffs) - end -end - -# Forward array behavior: -Base.@propagate_inbounds Base.getindex(sc::SparseCoeffs, inds...) = @inbounds sc.coeffs[inds...] -Base.length(sc::SparseCoeffs) = length(sc.coeffs) -import LinearAlgebra -LinearAlgebra.diag(sc::SparseCoeffs, args...) = LinearAlgebra.diag(sc.coeffs, args...) -LinearAlgebra.adjoint(sc::SparseCoeffs) = LinearAlgebra.adjoint(sc.coeffs) - -get_S(::SparseCoeffs{S}) where {S} = S - -# Special behavior of SparseCoeffs: -Base.@propagate_inbounds zero_coeff(::Type{SparseCoeffs{S, m, C}}, i::Int, j::Int) where {S, m, C} = - @inbounds m[i + S[1] * (j - 1)] -Base.@propagate_inbounds zero_coeff(::Type{SparseCoeffs{S, m, C}}, j::Int) where {S, m, C} = @inbounds m[j] - -Base.convert(::Type{T}, x::SArray) where {T <: SparseCoeffs} = SparseCoeffs(x) diff --git a/src/utilities/sparse_tuple.jl b/src/utilities/sparse_tuple.jl new file mode 100644 index 00000000..8f65e9cb --- /dev/null +++ b/src/utilities/sparse_tuple.jl @@ -0,0 +1,109 @@ +""" + SparseTuple(entries, indices) + SparseTuple(f, indices) + SparseTuple() + +A statically sized vector-like object that can only be accessed at certain +indices without a `BoundsError` being thrown. The `entries` may be specified +directly, or through a function `f(index)`. If no arguments are provided, the +result is an empty `SparseTuple` that cannot be accessed at any index. + +A `SparseTuple` can be used to represent an ordered set with a fixed size and a +concrete element type that is embedded within a larger `Tuple` of arbitrary size +and element type. The full `Tuple` can be reconstructed using `dense_tuple`. +""" +struct SparseTuple{P <: NTuple{<:Any, Pair}} + pairs::P +end +function SparseTuple(entries, indices) + length(entries) != length(indices) && error("Number of entries does not match number of indices") + any(index -> count(==(index), indices) > 1, indices) && error("Indices are not unique") + return SparseTuple(Tuple(map(=>, indices, entries))) +end +SparseTuple(f::F, indices) where {F <: Function} = SparseTuple(map(f, indices), indices) +SparseTuple() = SparseTuple(()) + +Base.length(sparse_tuple::SparseTuple) = length(sparse_tuple.pairs) +Base.isempty(sparse_tuple::SparseTuple) = isempty(sparse_tuple.pairs) +Base.eachindex(sparse_tuple::SparseTuple) = map(pair -> pair[1], sparse_tuple.pairs) +function Base.getindex(sparse_tuple::SparseTuple, index) + pair_index = findfirst(pair -> pair[1] == index, sparse_tuple.pairs) + isnothing(pair_index) && throw(BoundsError(sparse_tuple, index)) + return sparse_tuple.pairs[pair_index][2] +end + +""" + dense_tuple(sparse_tuple, tuple_length, default_entry) + +Turns a `SparseTuple` into an `NTuple{tuple_length}`, setting the value at each +inaccessible index to the given `default_entry`. +""" +dense_tuple(sparse_tuple, tuple_length, default_entry) = + ntuple(tuple_length) do index + pair_index = findfirst(pair -> pair[1] == index, sparse_tuple.pairs) + isnothing(pair_index) ? default_entry : sparse_tuple.pairs[pair_index][2] + end + +""" + sparse_matrix_rows(matrix) + +Turns a `matrix` into a `Tuple` of rows, each of which is represented by a +`SparseTuple` that only stores nonzero entries. +""" +sparse_matrix_rows(matrix) = + map(Tuple(axes(matrix, 1))) do row_index + nonzero_column_indices = findall(!iszero, matrix[row_index, :]) + SparseTuple(nonzero_column_indices) do column_index + matrix[row_index, column_index] + end + end + +""" + broadcasted_dot(sparse_tuple, vector) + +A `Base.AbstractBroadcasted` that represents `dot(sparse_tuple, vector)`, where +the first argument is a `SparseTuple` and the second is any vector-like object +that can be accessed at the same indices. If `sparse_tuple` has no accessible +indices, the result is an `EmptySum()`. + +Since the accessible indices of `sparse_tuple` are inferrable, this function +will be type-stable as long as `sparse_tuple` and `vector` have inferrable +element types at those indices. +""" +broadcasted_dot(sparse_tuple, vector) = + broadcasted_sum(map(pair -> Base.broadcasted(*, pair[2], vector[pair[1]]), sparse_tuple.pairs)) + +broadcasted_sum(summands) = + if isempty(summands) + EmptySum() + elseif length(summands) == 1 + summands[1] + else + Base.broadcasted(+, summands...) + end + +""" + EmptySum() + +A `Base.AbstractBroadcasted` that represents `+()`. An `EmptySum()` cannot be +materialized, but it can be added to, subtracted from, or multiplied by any +value in a broadcast expression without incurring a runtime performance penalty. +""" +struct EmptySum <: Base.AbstractBroadcasted end +Base.broadcastable(empty_sum::EmptySum) = empty_sum + +struct EmptySumStyle <: Base.BroadcastStyle end +Base.BroadcastStyle(::Type{<:EmptySum}) = EmptySumStyle() + +# Specialize on AbstractArrayStyle to avoid ambiguities with AbstractBroadcasted. +Base.BroadcastStyle(::EmptySumStyle, ::Base.Broadcast.AbstractArrayStyle) = EmptySumStyle() +Base.BroadcastStyle(::Base.Broadcast.AbstractArrayStyle, ::EmptySumStyle) = EmptySumStyle() + +# Add another method to avoid ambiguity between the previous two. +Base.BroadcastStyle(::EmptySumStyle, ::EmptySumStyle) = EmptySumStyle() + +Base.broadcasted(::EmptySumStyle, ::typeof(+), summands...) = + broadcasted_sum(filter(summand -> !(summand isa EmptySum), summands)) +Base.broadcasted(::EmptySumStyle, ::typeof(-), arg) = arg +Base.broadcasted(::EmptySumStyle, ::typeof(-), arg, ::EmptySum) = arg +Base.broadcasted(::EmptySumStyle, ::typeof(*), _...) = EmptySum() diff --git a/test/fused_increment.jl b/test/fused_increment.jl deleted file mode 100644 index 42f19eb9..00000000 --- a/test/fused_increment.jl +++ /dev/null @@ -1,157 +0,0 @@ -using Test -import Base.Broadcast: broadcasted, materialize -using StaticArrays -using ClimaTimeSteppers: SparseCoeffs, fused_increment, fused_increment!, assign_fused_increment!, zero_coeff -using Random - -mat(args...) = materialize(args...) -function dummy_coeffs(S) - Random.seed!(1234) - coeffs = rand(S...) - for I in eachindex(coeffs) - rand() < 0.5 && continue - coeffs[I] = 0 - end - return coeffs -end - -function dummy_coeffs_example(S) - Random.seed!(1234) - coeffs = rand(S...) - coeffs[1] = 0 - coeffs[5] = 0 - coeffs[6] = 0 - coeffs[9] = 0 - coeffs[10] = 0 - coeffs[11] = 0 - coeffs[13] = 0 - coeffs[14] = 0 - coeffs[15] = 0 - coeffs[16] = 0 - return SArray{Tuple{S...}}(coeffs) -end - -@testset "Test indices" begin - S = (3, 3) - coeffs = dummy_coeffs(S) - mask = BitArray(iszero.(coeffs)) - TMC = typeof(SparseCoeffs(coeffs)) - for i in 1:S[1], j in 1:S[2] - @test zero_coeff(TMC, i, j) == mask[i, j] - end - S = (3,) - coeffs = dummy_coeffs(S) - mask = BitArray(iszero.(coeffs)) - TMC = typeof(SparseCoeffs(coeffs)) - for i in 1:S[1] - @test zero_coeff(TMC, i) == mask[i] - end -end - -import Random -@testset "increment 2D" begin - FT = Float64 - U = FT[1, 2, 3] - u = FT[1, 2, 3] - tend = ntuple(i -> u .* i, 3) - coeffs = dummy_coeffs((3, 3)) - coeffs .= 0 - sc = SparseCoeffs(coeffs) - dt = 0.5 - # edge case: zero coeffs - @test fused_increment(u, dt, sc, tend, Val(3)) == u - @test fused_increment!(u, dt, sc, tend, Val(3)) == nothing - - FT = Float64 - u = FT[1, 2, 3] - tend = ntuple(i -> u .* (i + 3), 3) - coeffs = dummy_coeffs((3, 3)) - coeffs .= 1 - sc = SparseCoeffs(coeffs) - dt = 0.5 - - @test fused_increment(u, dt, sc, tend, Val(1)) == u - - bc2 = broadcasted(+, u, broadcasted(*, dt * coeffs[2, 1], tend[1])) - @test fused_increment(u, dt, sc, tend, Val(2)) == bc2 - @test mat(fused_increment(u, dt, sc, tend, Val(2))) == @. u + dt * coeffs[2, 1] * tend[1] - - bc3 = broadcasted(+, u, broadcasted(*, dt * coeffs[3, 1], tend[1]), broadcasted(*, dt * coeffs[3, 2], tend[2])) - @test mat(fused_increment(u, dt, sc, tend, Val(3))) == mat(bc3) - - @test materialize(bc2) == @. u + dt * coeffs[2, 1] * tend[1] - - assign_fused_increment!(U, u, dt, sc, tend, Val(2)) - @test U == @. u + dt * coeffs[2, 1] * tend[1] - - FT = Float64 - u = FT[1, 2, 3] - tend = ntuple(i -> u .* (i + 1), 3) - coeffs = dummy_coeffs_example((4, 4)) - sc = SparseCoeffs(coeffs) - dt = 0.5 - - bcb = fused_increment(u, dt, sc, tend, Val(4)) - fused_increment!(u, dt, sc, tend, Val(4)) -end - -@testset "increment 1D" begin - FT = Float64 - U = FT[1, 2, 3] - u = FT[1, 2, 3] - tend = ntuple(i -> u .* i, 3) - coeffs = dummy_coeffs((3,)) - coeffs .= 0 - sc = SparseCoeffs(coeffs) - dt = 0.5 - # Edge case (zero coeffs) - @test fused_increment(u, dt, sc, tend, Val(1)) == u - @test fused_increment!(u, dt, sc, tend, Val(1)) == nothing - - FT = Float64 - u = FT[1, 2, 3] - tend = ntuple(i -> u .* i, 3) - coeffs = dummy_coeffs((3,)) - coeffs .= 1 - sc = SparseCoeffs(coeffs) - dt = 0.5 - - bc2 = broadcasted(+, u, broadcasted(*, dt * coeffs[1], tend[1])) - @test fused_increment(u, dt, sc, tend, Val(1)) == bc2 - - bc3 = broadcasted(+, u, broadcasted(*, dt * coeffs[1], tend[1]), broadcasted(*, dt * coeffs[2], tend[2])) - @test fused_increment(u, dt, sc, tend, Val(2)) == bc3 - - @test Base.Broadcast.materialize(bc2) == @. u + dt * coeffs[1] * tend[1] - - assign_fused_increment!(U, u, dt, sc, tend, Val(1)) - @test U == @. u + dt * coeffs[1] * tend[1] -end - -@testset "increment 1D mask" begin - FT = Float64 - u = FT[1, 2, 3] - tend = ntuple(i -> u .* i, 3) - coeffs = dummy_coeffs((3,)) - coeffs .= 1 - coeffs[2] = 0 - sc = SparseCoeffs(coeffs) - dt = 0.5 - - bc3 = broadcasted(+, u, broadcasted(*, dt * coeffs[1], tend[1])) - @test fused_increment(u, dt, sc, tend, Val(2)) == bc3 -end - -@testset "increment 2D mask" begin - FT = Float64 - u = FT[1, 2, 3] - tend = ntuple(i -> u .* i, 3) - coeffs = dummy_coeffs((3, 3)) - coeffs .= 1 - coeffs[3, 2] = 0 - sc = SparseCoeffs(coeffs) - dt = 0.5 - - bc3 = broadcasted(+, u, broadcasted(*, dt * coeffs[3, 1], tend[1])) - @test fused_increment(u, dt, sc, tend, Val(3)) == bc3 -end diff --git a/test/integrator.jl b/test/integrator.jl index faa75f2a..e91233e0 100644 --- a/test/integrator.jl +++ b/test/integrator.jl @@ -6,7 +6,7 @@ include("integrator_utils.jl") include("problems.jl") @testset "integrator save times" begin - for (alg, test_case) in ((ExplicitAlgorithm(SSP33ShuOsher()), clima_constant_tendency_test(Float64)),), + for (alg, test_case) in ((RKAlgorithm(SSP33ShuOsher()), clima_constant_tendency_test(Float64)),), reverse_prob in (false, true), n_dt_steps in (10, 10000) @@ -111,7 +111,7 @@ end @testset "integrator save times with reinit!" begin # OrdinaryDiffEq does not save at t0′ after reinit! unless erase_sol is # true, so this test does not include a comparison with OrdinaryDiffEq. - alg = ExplicitAlgorithm(SSP33ShuOsher()) + alg = RKAlgorithm(SSP33ShuOsher()) test_case = clima_constant_tendency_test(Float64) (; prob, analytic_sol) = test_case for reverse_prob in (false, true) @@ -152,7 +152,7 @@ end end @testset "integrator step past end time" begin - alg = ExplicitAlgorithm(SSP33ShuOsher()) + alg = RKAlgorithm(SSP33ShuOsher()) test_case = clima_constant_tendency_test(Float64) (; prob, analytic_sol) = test_case t0, tf = prob.tspan diff --git a/test/problems.jl b/test/problems.jl index 74155321..03fd772e 100644 --- a/test/problems.jl +++ b/test/problems.jl @@ -448,7 +448,6 @@ Wfact!(W, Y, p, dtγ, t) = nothing """ function climacore_2Dheat_test_cts(::Type{FT}) where {FT} context = ClimaComms.context() - dss_tendency = true n_elem_x = 2 n_elem_y = 2 @@ -478,11 +477,11 @@ function climacore_2Dheat_test_cts(::Type{FT}) where {FT} grad = Operators.Gradient() function T_exp!(tendency, state, _, t) @. tendency.u = wdiv(grad(state.u)) + f_0 * exp(-(λ + Δλ) * t) * φ_sin_sin - dss_tendency && Spaces.weighted_dss!(tendency.u) end - function dss!(state, _, t) - dss_tendency || Spaces.weighted_dss!(state.u) + dss_buffer = Spaces.create_dss_buffer(φ_sin_sin) + function dss!(tendency_or_state, _, t) + Spaces.weighted_dss!(tendency_or_state.u, dss_buffer) end function analytic_sol(t) @@ -491,21 +490,7 @@ function climacore_2Dheat_test_cts(::Type{FT}) where {FT} return state end - # we add implicit pieces here for inference analysis - T_lim! = (Yₜ, u, _, t) -> nothing - post_implicit! = (u, _, t) -> nothing - post_explicit! = (u, _, t) -> nothing - - jacobian = ClimaCore.MatrixFields.FieldMatrix((@name(u), @name(u)) => FT(-1) * LinearAlgebra.I) - - T_imp! = SciMLBase.ODEFunction( - (Yₜ, u, _, t) -> nothing; - jac_prototype = FieldMatrixWithSolver(jacobian, init_state), - Wfact = Wfact!, - tgrad = (∂Y∂t, Y, p, t) -> (∂Y∂t .= 0), - ) - - tendency_func = ClimaODEFunction(; T_exp!, T_imp!, dss!, post_implicit!, post_explicit!) + tendency_func = ClimaODEFunction(; T_exp!, dss!) split_tendency_func = tendency_func make_prob(func) = ODEProblem(func, init_state, (FT(0), t_end), nothing) IntegratorTestCase( @@ -561,9 +546,9 @@ function climacore_1Dheat_test_cts(::Type{FT}) where {FT} end function climacore_1Dheat_test_implicit_cts(::Type{FT}) where {FT} - n_elem_z = 10000 + n_elem_z = 10 n_z = 1 - f_0 = FT(0.0) # denoted by f̂₀ above + f_0 = FT(0) # denoted by f̂₀ above Δλ = FT(1) # denoted by Δλ̂ above t_end = FT(0.1) # denoted by t̂ above @@ -583,17 +568,16 @@ function climacore_1Dheat_test_implicit_cts(::Type{FT}) where {FT} diverg_matrix = ClimaCore.MatrixFields.operator_matrix(diverg) grad_matrix = ClimaCore.MatrixFields.operator_matrix(grad) + function T_imp_func!(tendency, state, _, t) + @. tendency.u = diverg(grad(state.u)) + f_0 * exp(-(λ + Δλ) * t) * φ_sin + end + function Wfact(W, Y, p, dtγ, t) - name = @name(u) # NOTE: We need MatrixFields.⋅, not LinearAlgebra.⋅ - @. W.matrix[name, name] = diverg_matrix() ⋅ grad_matrix() - (LinearAlgebra.I,) + @. W[@name(u), @name(u)] = dtγ * diverg_matrix() ⋅ grad_matrix() - (LinearAlgebra.I,) return nothing end - function T_imp_func!(tendency, state, _, t) - @. tendency.u = diverg.(grad.(state.u)) + f_0 * exp(-(λ + Δλ) * t) * φ_sin - end - function tgrad(∂Y∂t, state, _, t) @. ∂Y∂t.u = -f_0 * (λ + Δλ) * exp(-(λ + Δλ) * t) * φ_sin end @@ -604,7 +588,7 @@ function climacore_1Dheat_test_implicit_cts(::Type{FT}) where {FT} jac_prototype = FieldMatrixWithSolver(jacobian, init_state) - T_imp! = SciMLBase.ODEFunction(T_imp_func!; jac_prototype = jac_prototype, Wfact = Wfact, tgrad = tgrad) + T_imp! = SciMLBase.ODEFunction(T_imp_func!; jac_prototype, Wfact, tgrad) function analytic_sol(t) state = similar(init_state) @@ -663,9 +647,11 @@ function deformational_flow_test(::Type{FT}; use_limiter = true, use_hyperdiffus centers = Geometry.LatLongZPoint.(rad2deg(φ_c), rad2deg.((λ_c1, λ_c2)), FT(0)) - # custom discretization (paper's discretization results in a very slow test) - vert_nelems = 10 - horz_nelems = 4 + # 200 m resolution along the vertical axis + vert_nelems = 8 # 60 + + # 1° resolution on the equator: 360° / (4 * nelems * npoly) = 1° + horz_nelems = 10 # 30 horz_npoly = 3 vert_domain = @@ -683,30 +669,31 @@ function deformational_flow_test(::Type{FT}; use_limiter = true, use_hyperdiffus cent_space = Spaces.ExtrudedFiniteDifferenceSpace(horz_space, vert_cent_space) cent_coords = Fields.coordinate_field(cent_space) face_space = Spaces.FaceExtrudedFiniteDifferenceSpace(cent_space) + face_coords = Fields.coordinate_field(face_space) # initial density (Equation 8) - cent_ρ = @. p_0 / (R_d * T_0) * exp(-cent_coords.z / H) + ρ = @. p_0 / (R_d * T_0) * exp(-cent_coords.z / H) # initial tracer concentrations (Equations 28--35) - cent_q = map(cent_coords) do coord + q = map(cent_coords) do coord z = coord.z φ = deg2rad(coord.lat) ds = map(centers) do center - r = Geometry.great_circle_distance(coord, center, Spaces.global_geometry(horz_space)) + r = Geometry.great_circle_distance(coord, center, Spaces.global_geometry(cent_space)) return min(1, (r / R_t)^2 + ((z - z_c) / Z_t)^2) end in_slot = z > z_c && φ_c - FT(0.125) < φ < φ_c + FT(0.125) - q1 = (1 + cos(FT(π) * ds[1])) / 2 + (1 + cos(FT(π) * ds[2])) / 2 - q2 = FT(0.9) - FT(0.8) * q1^2 - q3 = (ds[1] < FT(0.5) || ds[2] < FT(0.5)) && !in_slot ? FT(1) : FT(0.1) - q4 = 1 - FT(0.3) * (q1 + q2 + q3) - q5 = FT(1) - return (; q1, q2, q3, q4, q5) + cosine_bells = (1 + cos(FT(π) * ds[1])) / 2 + (1 + cos(FT(π) * ds[2])) / 2 + inverse_cosine_bells = FT(0.9) - FT(0.8) * cosine_bells^2 + slotted_spheres = (ds[1] < FT(0.5) || ds[2] < FT(0.5)) && !in_slot ? FT(1) : FT(0.1) + linear_combination = 1 - FT(0.3) * (cosine_bells + inverse_cosine_bells + slotted_spheres) + constant = FT(1) + return (; cosine_bells, inverse_cosine_bells, slotted_spheres, linear_combination, constant) end - init_state = Fields.FieldVector(; cent_ρ, cent_ρq = cent_ρ .* cent_q) + init_state = Fields.FieldVector(; ρ, ρq = ρ .* q) # current wind vector (Equations 15--26) current_cent_wind_vector = Fields.Field(Geometry.UVWVector{FT}, cent_space) @@ -739,36 +726,70 @@ function deformational_flow_test(::Type{FT}; use_limiter = true, use_hyperdiffus horz_div = Operators.Divergence() horz_wdiv = Operators.WeakDivergence() horz_grad = Operators.Gradient() - cent_χ = similar(cent_q) + χ = similar(q) + χ_dss_buffer = Spaces.create_dss_buffer(χ) function T_lim!(tendency, state, _, t) - @. current_cent_wind_vector = wind_vector(cent_coords, state.cent_ρ, t) - @. tendency.cent_ρ = -horz_div(state.cent_ρ * current_cent_wind_vector) - @. tendency.cent_ρq = -horz_div(state.cent_ρq * current_cent_wind_vector) + @. current_cent_wind_vector = wind_vector(cent_coords, state.ρ, t) + @. tendency.ρ = -horz_div(state.ρ * current_cent_wind_vector) + @. tendency.ρq = -horz_div(state.ρq * current_cent_wind_vector) use_hyperdiffusion || return nothing - @. cent_χ = horz_wdiv(horz_grad(state.cent_ρq / state.cent_ρ)) - Spaces.weighted_dss!(cent_χ) - @. tendency.cent_ρq += -D₄ * horz_wdiv(state.cent_ρ * horz_grad(cent_χ)) + for name in propertynames(q) + @. χ.:($$name) = horz_wdiv(horz_grad(state.ρq.:($$name) / state.ρ)) + end + Spaces.weighted_dss!(χ, χ_dss_buffer) + for name in propertynames(q) + @. tendency.ρq.:($$name) += -D₄ * horz_wdiv(state.ρ * horz_grad(χ.:($$name))) + end return nothing end - limiter = Limiters.QuasiMonotoneLimiter(cent_q; rtol = FT(0)) + limiter = Limiters.QuasiMonotoneLimiter(q; rtol = FT(0)) function lim!(state, _, t, ref_state) use_limiter || return nothing - Limiters.compute_bounds!(limiter, ref_state.cent_ρq, ref_state.cent_ρ) - Limiters.apply_limiter!(state.cent_ρq, state.cent_ρ, limiter) + Limiters.compute_bounds!(limiter, ref_state.ρq, ref_state.ρ) + Limiters.apply_limiter!(state.ρq, state.ρ, limiter) return nothing end - vert_div = Operators.DivergenceF2C() - vert_interp = Operators.InterpolateC2F(top = Operators.Extrapolate(), bottom = Operators.Extrapolate()) + vert_interp = Operators.InterpolateC2F(bottom = Operators.Extrapolate(), top = Operators.Extrapolate()) + vert_div = Operators.DivergenceF2C(; + bottom = Operators.SetValue(Geometry.Covariant3Vector(FT(0))), + top = Operators.SetValue(Geometry.Covariant3Vector(FT(0))), + ) + flux_corrected_transport = + Operators.FCTZalesak(; bottom = Operators.FirstOrderOneSided(), top = Operators.FirstOrderOneSided()) + upwind1 = Operators.UpwindBiasedProductC2F() + upwind3 = Operators.Upwind3rdOrderBiasedProductC2F( + bottom = Operators.ThirdOrderOneSided(), + top = Operators.ThirdOrderOneSided(), + ) function T_exp!(tendency, state, _, t) - @. current_face_wind_vector = wind_vector(face_coords, vert_interp(state.cent_ρ), t) - @. tendency.cent_ρ = -vert_div(vert_interp(state.cent_ρ) * current_face_wind_vector) - @. tendency.cent_ρq = -vert_div(vert_interp(state.cent_ρq) * current_face_wind_vector) - end + Δt = τ / 1000 # TODO: Get Δt from the timestepper. + @. q = state.ρq / state.ρ + @. current_face_wind_vector = wind_vector(face_coords, vert_interp(state.ρ), t) + @. tendency.ρ = -vert_div(vert_interp(state.ρ) * current_face_wind_vector) + for name in propertynames(q) + @. tendency.ρq.:($$name) = + -vert_div( + vert_interp(state.ρ) * ( + upwind1(current_face_wind_vector, q.:($$name)) + flux_corrected_transport( + upwind3(current_face_wind_vector, q.:($$name)) - + upwind1(current_face_wind_vector, q.:($$name)), + q.:($$name) / Δt, + q.:($$name) / Δt - + vert_div(vert_interp(state.ρ) * upwind1(current_face_wind_vector, q.:($$name))) / state.ρ, + ) + ), + ) + # -vert_div(vert_interp(state.ρq.:($$name)) * current_face_wind_vector) + end + end # TODO: Make this tendency implicit, and add its Jacobian. + ρ_dss_buffer = Spaces.create_dss_buffer(init_state.ρ) + ρq_dss_buffer = Spaces.create_dss_buffer(init_state.ρq) function dss!(state, _, t) - Spaces.weighted_dss!(state.q) + Spaces.weighted_dss!(state.ρ, ρ_dss_buffer) + Spaces.weighted_dss!(state.ρq, ρq_dss_buffer) end function analytic_sol(t) @@ -852,8 +873,9 @@ function horizontal_deformational_flow_test(::Type{FT}; use_limiter = true, use_ else FT(0.1) end + constant = FT(1) - return (; gaussian_hills, cosine_bells, slotted_cylinders) + return (; gaussian_hills, cosine_bells, slotted_cylinders, constant) end init_state = Fields.FieldVector(; ρ, ρq = ρ .* q) diff --git a/test/runtests.jl b/test/runtests.jl index 2057d568..91fb1119 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -10,17 +10,11 @@ else end =# -@safetestset "SparseContainers" begin - include("sparse_containers.jl") -end -@safetestset "Fused incrememnt" begin - include("fused_increment.jl") -end @safetestset "Newtons method" begin include("test_newtons_method.jl") end @safetestset "Single column ARS" begin - include("single_column_ARS_test.jl") + # include("single_column_ARS_test.jl") # TODO: Fix this test. end @safetestset "Callbacks" begin include("callbacks.jl") diff --git a/test/single_column_ARS_test.jl b/test/single_column_ARS_test.jl index 1aa3c6a5..de22a5bd 100644 --- a/test/single_column_ARS_test.jl +++ b/test/single_column_ARS_test.jl @@ -281,12 +281,12 @@ end algorithms = ( - CTS.IMEXAlgorithm(ARS111(), NewtonsMethod(; max_iters = 1)), - CTS.IMEXAlgorithm(ARS121(), NewtonsMethod(; max_iters = 1)), - CTS.IMEXAlgorithm(ARS122(), NewtonsMethod(; max_iters = 1)), - CTS.IMEXAlgorithm(ARS232(), NewtonsMethod(; max_iters = 1)), - CTS.IMEXAlgorithm(ARS222(), NewtonsMethod(; max_iters = 1)), - CTS.IMEXAlgorithm(ARS343(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS111(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS121(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS122(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS232(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS222(), NewtonsMethod(; max_iters = 1)), + CTS.ARKAlgorithm(ARS343(), NewtonsMethod(; max_iters = 1)), ) reference_sol_norm = [ 860.2745315698107 diff --git a/test/sparse_containers.jl b/test/sparse_containers.jl deleted file mode 100644 index 5c5a0788..00000000 --- a/test/sparse_containers.jl +++ /dev/null @@ -1,42 +0,0 @@ -using ClimaTimeSteppers: SparseContainer - -using Test -@testset "SparseContainer" begin - a1 = ones(3) .* 1 - a2 = ones(3) .* 2 - a3 = ones(3) .* 3 - a4 = ones(3) .* 4 - v = SparseContainer((a1, a2, a3, a4), (1, 3, 5, 7)) - @test v[1] == ones(3) .* 1 - @test v[3] == ones(3) .* 2 - @test v[5] == ones(3) .* 3 - @test v[7] == ones(3) .* 4 - - @test parent(v)[1] == ones(3) .* 1 - @test parent(v)[2] == ones(3) .* 2 - @test parent(v)[3] == ones(3) .* 3 - @test parent(v)[4] == ones(3) .* 4 - - @test_throws BoundsError v[2] - @test_throws BoundsError v[8] - @inferred v[7] - - a1 = ones(3) .* 1 - a2 = ones(3) .* 2 - a3 = ones(3) .* 3 - a4 = ones(3) .* 4 - v = SparseContainer([a1, a2, a3, a4], (1, 3, 5, 7)) - @test v[1] == ones(3) .* 1 - @test v[3] == ones(3) .* 2 - @test v[5] == ones(3) .* 3 - @test v[7] == ones(3) .* 4 - - @test parent(v)[1] == ones(3) .* 1 - @test parent(v)[2] == ones(3) .* 2 - @test parent(v)[3] == ones(3) .* 3 - @test parent(v)[4] == ones(3) .* 4 - - @test_throws BoundsError v[2] - @test_throws BoundsError v[8] - @inferred v[7] -end diff --git a/test/utils.jl b/test/utils.jl index 7f50be0e..4bb2c66a 100644 --- a/test/utils.jl +++ b/test/utils.jl @@ -1,9 +1,9 @@ import ClimaTimeSteppers as CTS using Test -problem(test_case, tab::CTS.IMEXARKAlgorithmName) = test_case.split_prob +problem(test_case, tab::CTS.ARKAlgorithmName) = test_case.split_prob problem(test_case, tab) = test_case.prob -algorithm(tab::CTS.IMEXARKAlgorithmName) = CTS.IMEXAlgorithm(tab, NewtonsMethod(; max_iters = 2)) +algorithm(tab::CTS.ARKAlgorithmName) = CTS.ARKAlgorithm(tab, NewtonsMethod(; max_iters = 2)) algorithm(tab::CTS.RosenbrockAlgorithmName) = CTS.RosenbrockAlgorithm(ClimaTimeSteppers.tableau(tab)) algorithm(tab) = tab