-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (125 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import sys
import time
import numpy as np
from tqdm import tqdm
from icecream import ic
from easydict import EasyDict
from os.path import dirname as up
import torch
from torch.optim.lr_scheduler import MultiStepLR
sys.path.append(up(os.path.abspath(__file__)))
sys.path.append(up(up(os.path.abspath(__file__))))
from src.metrics import Metrics
from src.model.get_model import get_model
from src.dataloader.dataloader import create_dataloader
from utils.plot_learning_curves import save_learning_curves
from utils import utils
from config.config import train_logger, train_step_logger
# LABEL_DISTRIBUTION = [0.8051, 0.1949]
def train(config: EasyDict) -> None:
# Use gpu or cpu
device = utils.get_device(device_config=config.learning.device)
ic(device)
# Get data
train_generator = create_dataloader(config=config, mode='train')
val_generator = create_dataloader(config=config, mode='val')
n_train, n_val = len(train_generator), len(val_generator)
ic(n_train, n_val)
# Get model
model = get_model(config)
model = model.to(device)
ic(model)
ic(model.get_number_parameters())
# Loss
weight = torch.tensor([1, 3.9], device=device)
ic(weight)
criterion = torch.nn.CrossEntropyLoss(reduction='mean', weight=weight)
# Optimizer and Scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning.learning_rate)
scheduler = MultiStepLR(optimizer, milestones=config.learning.milesstone, gamma=config.learning.gamma)
# Get Metrics
metrics = Metrics(config=config)
metrics.to(device)
save_experiment = config.save_experiment
ic(save_experiment)
if save_experiment:
logging_path = train_logger(config)
best_val_loss = 10e6
###############################################################
# Start Training #
###############################################################
start_time = time.time()
for epoch in range(1, config.learning.epochs + 1):
ic(epoch)
train_loss = 0
train_range = tqdm(train_generator)
train_metrics = np.zeros(metrics.num_metrics)
# Training
model.train()
for i, (data, y_true) in enumerate(train_range):
utils.dict_to_device(data, device)
y_true = y_true.to(device)
y_pred = utils.forward(model=model, data=data, task=config.task)
loss = criterion(y_pred, y_true)
train_loss += loss.item()
train_metrics += metrics.compute(y_pred=y_pred, y_true=y_true)
loss.backward()
optimizer.step()
optimizer.zero_grad()
current_loss = train_loss / (i + 1)
train_range.set_description(f"TRAIN -> epoch: {epoch} || loss: {current_loss:.4f}")
train_range.refresh()
train_loss = train_loss / n_train
train_metrics = train_metrics / n_train
print('TRAIN:')
print(metrics.table(train_metrics))
###############################################################
# Start Validation #
###############################################################
val_loss = 0
val_range = tqdm(val_generator)
val_metrics = np.zeros(metrics.num_metrics)
model.eval()
with torch.no_grad():
for i, (data, y_true) in enumerate(val_range):
utils.dict_to_device(data, device)
y_true = y_true.to(device)
y_pred = utils.forward(model=model, data=data, task=config.task)
loss = criterion(y_pred, y_true)
val_loss += loss.item()
val_metrics += metrics.compute(y_pred=y_pred, y_true=y_true)
current_loss = val_loss / (i + 1)
val_range.set_description(f"VAL -> epoch: {epoch} || loss: {current_loss:.4f}")
val_range.refresh()
scheduler.step()
###################################################################
# Save Scores in logs #
###################################################################
val_loss = val_loss / n_val
val_metrics = val_metrics / n_val
print('VAL:')
print(metrics.table(val_metrics))
if save_experiment:
train_step_logger(path=logging_path,
epoch=epoch,
train_loss=train_loss,
val_loss=val_loss,
train_metrics=train_metrics,
val_metrics=val_metrics)
if val_loss < best_val_loss:
print('save model weights')
torch.save(model.get_only_learned_parameters(),
os.path.join(logging_path, 'checkpoint.pt'))
best_val_loss = val_loss
print(f'{best_val_loss = }')
stop_time = time.time()
print(f"training time: {stop_time - start_time}secondes for {config.learning.epochs} epochs")
if save_experiment and config.learning.save_learning_curves:
save_learning_curves(logging_path)
if __name__ == '__main__':
import yaml
stream = open(file=os.path.join('config', 'config.yaml'), mode='r')
config = EasyDict(yaml.safe_load(stream))
ic(config)
train(config=config)