forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStackKernel.cpp
73 lines (60 loc) · 2.05 KB
/
StackKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Copyright 2004-present Facebook. All Rights Reserved.
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/cpu/vec256/functional.h>
#include <ATen/cpu/vec256/vec256.h>
#include <ATen/native/cpu/StackKernel.h>
namespace at {
namespace native {
namespace {
struct InputMeta {
void* data_ptr;
int64_t inner_size;
InputMeta(const Tensor& t, int64_t dim, int64_t inner)
: data_ptr(t.data_ptr()), inner_size(t.sizes()[dim] * inner) {}
};
template <typename scalar_t>
void stack_serial_kernel_impl(Tensor& result, TensorList tensors, int64_t dim) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
dim >= 0 && dim <= result.dim(),
"dim out of range in stack_serial_kernel_impl");
int64_t outer =
result.numel() / (result.sizes()[dim] * result.strides()[dim]);
scalar_t* result_data = result.data_ptr<scalar_t>();
int64_t ninputs = tensors.size();
std::vector<InputMeta> inputs;
inputs.reserve(ninputs);
for (auto const& tensor : tensors) {
inputs.emplace_back(tensor, dim, tensor.strides()[dim]);
}
using Vec = vec256::Vec256<scalar_t>;
scalar_t* result_ptr = result_data;
for (int64_t i = 0; i < outer; ++i) {
for (int64_t j = 0; j < ninputs; j++) {
int64_t local_inner = inputs[j].inner_size;
scalar_t* input_ptr = (scalar_t*)(inputs[j].data_ptr) + i * local_inner;
if (local_inner < Vec::size()) {
#if !defined(_MSC_VER) && !defined(COMPILING_FOR_MIN_SIZE)
#pragma unroll
#endif
for (int64_t k = 0; k < local_inner; k++) {
result_ptr[k] = input_ptr[k];
}
} else {
vec256::map(
[](Vec x) { return x; }, result_ptr, input_ptr, local_inner);
}
result_ptr += local_inner;
}
}
}
void stack_serial_kernel(Tensor& result, TensorList tensors, int64_t dim) {
AT_DISPATCH_FLOATING_TYPES(
result.scalar_type(), "stack_serial_kernel", [&]() {
stack_serial_kernel_impl<scalar_t>(result, tensors, dim);
});
}
} // anonymous namespace
REGISTER_DISPATCH(stack_serial_stub, &stack_serial_kernel);
} // namespace native
} // namespace at