forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLossMulti.h
72 lines (65 loc) · 2.12 KB
/
LossMulti.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/AccumulateType.h>
#pragma once
namespace at { namespace native {
namespace {
static void multilabel_margin_loss_shape_check(
int64_t& nframe,
int64_t& dim,
const int64_t& ndims,
TensorArg& target_arg,
const Tensor& input,
const Tensor& target) {
bool valid_inputs = (ndims == 2 && input.size(1) != 0) || (ndims == 1 && input.size(0) != 0) || ndims == 0;
TORCH_CHECK(
valid_inputs,
"Expected non-empty vector or matrix with optional 0-dim batch size, but got: ",
input.sizes());
if (ndims <= 1) {
nframe = 1;
dim = ndims == 0 ? 1 : input.size(0);
TORCH_CHECK(
valid_inputs && target.dim() <= 1 && target.numel() == dim,
"inconsistent size ",
target.sizes(),
" for ",
target_arg);
} else {
nframe = input.size(0);
dim = input.size(1);
TORCH_CHECK(
valid_inputs && target.dim() == 2 && target.size(0) == nframe &&
target.size(1) == dim,
"inconsistent size ",
target.sizes(),
" for ",
target_arg);
}
}
static void multi_margin_loss_shape_check(
int64_t& nframe,
int64_t& dim,
const int64_t& ndims,
TensorArg& target_arg,
const Tensor& input,
const Tensor& target) {
bool valid_inputs = (ndims == 2 && input.size(1) != 0) || (ndims == 1 && input.size(0) != 0) || ndims == 0;
if (ndims <= 1) {
nframe = 1;
dim = ndims == 0 ? 1 : input.size(0);
} else {
nframe = input.size(0);
dim = input.size(1);
}
TORCH_CHECK(
valid_inputs,
"Expected non-empty vector or matrix with optional 0-dim batch size, but got: ",
input.sizes());
TORCH_CHECK(
valid_inputs && target.dim() <= 1 && target.numel() == nframe,
"inconsistent target size, got: ",
target.sizes());
}
} // anonymous namespace
}} // namespace at::native