forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplexHelper.h
78 lines (65 loc) · 3.12 KB
/
ComplexHelper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#pragma once
#include <ATen/ATen.h>
namespace at { namespace native {
// View tensor with new dtype, storage offset, sizes and strides
inline Tensor view_tensor(
const Tensor &tensor, ScalarType dtype,
int64_t offset, IntArrayRef sizes, IntArrayRef strides) {
Storage storage = tensor.storage();
auto new_tensor = detail::make_tensor<TensorImpl>(
std::move(storage), tensor.key_set(), scalarTypeToTypeMeta(dtype));
auto * impl = new_tensor.unsafeGetTensorImpl();
impl->set_storage_offset(offset);
impl->set_sizes_and_strides(sizes, strides);
return new_tensor;
}
inline DimVector computeStrideForViewAsReal(IntArrayRef oldstride) {
DimVector res(oldstride.size() + 1);
for(size_t i = 0; i < oldstride.size(); i++) {
res[i] = oldstride[i] * 2;
}
res.back() = 1;
return res;
}
// expects as input a complex tensor and returns back a tensor
// with corresponding real dtype containing the complex values
// in the last two dimensions
Tensor view_as_real(const Tensor& self) {
TORCH_CHECK(self.is_complex(), "view_as_real is only supported for complex tensors");
auto old_sizes = self.sizes();
DimVector new_sizes(old_sizes.size() + 1);
std::copy(old_sizes.begin(), old_sizes.end(), new_sizes.begin());
// last dimension will always have two elements containing the real and imag vals
new_sizes.back() = 2;
auto new_strides = computeStrideForViewAsReal(self.strides());
auto new_storage_offset = 2 * self.storage_offset();
const auto float_type = c10::toValueType(self.scalar_type());
return view_tensor(self, float_type, new_storage_offset, new_sizes, new_strides);
}
inline DimVector computeStrideForViewAsComplex(IntArrayRef oldstride) {
const int64_t dim = oldstride.size();
TORCH_CHECK(oldstride[dim-1] == 1, "Tensor must have a last dimension with stride 1");
DimVector res(dim - 1);
for (int64_t i = 0; i < res.size(); i++) {
TORCH_CHECK(oldstride[i] % 2 == 0, "Tensor must have a stride divisible by 2 for all but last dimension");
res[i] = oldstride[i] / 2;
}
return res;
}
// expects as input a float or double tensor with last dimension of size 2
// and returns back a tensor with corresponding complex dtype
Tensor view_as_complex(const Tensor& self) {
TORCH_CHECK(
self.scalar_type() == kFloat || self.scalar_type() == kDouble || self.scalar_type() == kHalf,
"view_as_complex is only supported for half, float and double tensors, but got a tensor of scalar type: ", self.scalar_type());
auto old_sizes = self.sizes();
TORCH_CHECK(old_sizes.size() != 0, "Input tensor must have one or more dimensions");
TORCH_CHECK(old_sizes[old_sizes.size()-1] == 2, "Tensor must have a last dimension of size 2");
DimVector new_sizes(old_sizes.begin(), old_sizes.end() - 1);
const auto new_strides = computeStrideForViewAsComplex(self.strides());
const auto complex_type = c10::toComplexType(self.scalar_type());
TORCH_CHECK(self.storage_offset() % 2 == 0, "Tensor must have a storage_offset divisible by 2");
const auto new_storage_offset = self.storage_offset() / 2;
return view_tensor(self, complex_type, new_storage_offset, new_sizes, new_strides);
}
}} // namespace at::native