-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbuilder.py
145 lines (111 loc) · 4.63 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import torch.nn as nn
import re
from functools import partial
import numpy as np
from torch.nn.init import trunc_normal_
from torch.nn import functional as F
import math
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class TokenPacker(nn.Module):
def __init__(
self,
raw_grid=24,
embed_dim=1024,
num_heads=1024//128,
kv_dim=1024,
hidden_size=4096,
scale_factor=2,
norm_layer=partial(nn.LayerNorm, eps=1e-6)
):
super().__init__()
if raw_grid%scale_factor!=0:
raise ValueError("scale_factor must be divisible by grid size")
self.raw_grid = raw_grid
self.grid_size = raw_grid//scale_factor
self.num_queries = self.grid_size ** 2
self.embed_dim = embed_dim
self.num_heads = num_heads
self.scale_factor = scale_factor
self.q_proj_1 = nn.Linear(kv_dim, embed_dim, bias=False)
k_modules = [nn.Linear(4096, 1024)]
for _ in range(1,2):
k_modules.append(nn.GELU())
k_modules.append(nn.Linear(1024, 1024))
self.k_proj_1 = nn.Sequential(*k_modules)
v_modules = [nn.Linear(4096, 1024)]
for _ in range(1,2):
v_modules.append(nn.GELU())
v_modules.append(nn.Linear(1024, 1024))
self.v_proj_1 = nn.Sequential(*v_modules)
self.ln_q_1 = norm_layer(embed_dim)
self.ln_k_1 = norm_layer(embed_dim)
self.ln_v_1 = norm_layer(embed_dim)
self.clip_attn = nn.MultiheadAttention(embed_dim, num_heads)
modules = [nn.Linear(1024, hidden_size)]
for _ in range(1, 2):
modules.append(nn.GELU())
modules.append(nn.Linear(hidden_size, hidden_size))
self.mlp = nn.Sequential(*modules)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def divide_feature(self, x, kernel_size, token_num, N, c):
h = w = int(token_num**0.5)
reshape_x = x.reshape(h, w, N, c).reshape(h//kernel_size, kernel_size, w, N, c)
reshape_x = reshape_x.permute(0,2,1,3,4)
reshape_x = reshape_x.reshape(h//kernel_size, w//kernel_size, kernel_size, kernel_size, N, c)
reshape_x = reshape_x.permute(0,1,3,2,4,5).reshape(h//kernel_size, w//kernel_size, kernel_size*kernel_size, N, c)
reshape_x = reshape_x.permute(2,0,1,3,4).reshape(kernel_size*kernel_size, -1, c)
return reshape_x
def forward(self, x, attn_mask=None):
x_multi = x[1] # mulit-level
x = x[0] # original single-level
key = self.ln_k_1(self.k_proj_1(x_multi)).permute(1, 0, 2)
value = self.ln_v_1(self.v_proj_1(x_multi)).permute(1, 0, 2)
token_num, N, c = key.shape
q = F.interpolate(x.reshape(x.shape[0],self.raw_grid,self.raw_grid,-1).float().permute(0,3,1,2), size=(self.grid_size, self.grid_size), mode='bilinear').permute(0,2,3,1) ## fix
q = q.reshape(q.shape[0], -1, q.shape[-1]).to(x.dtype)
query = self.ln_q_1(self.q_proj_1(q)).permute(1, 0, 2)
reshape_query = self.divide_feature(query, 1, self.num_queries, N, c)
reshape_key = self.divide_feature(key, self.scale_factor, token_num, N, c)
reshape_value = self.divide_feature(value, self.scale_factor, token_num, N, value.shape[-1])
out = self.clip_attn(
reshape_query,
reshape_key,
reshape_value,
attn_mask=attn_mask)[0]
x = out
x = x.reshape(self.num_queries, N, -1)
x = x.permute(1, 0, 2)
x = self.mlp(x)
return x
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
def build_vision_projector(config):
return TokenPacker(hidden_size=config.hidden_size, scale_factor=config.scale_factor)