-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdisplay.lisp
362 lines (299 loc) · 11.8 KB
/
display.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
;; Code for rendering numbers for display
(declaim (optimize (debug 3) (safety 3)))
(in-package :HP67-INTERNALS)
;; This isn't actually that simple a problem. Note, for instance,
;; that the format directive is permitted to round up or round down
;; from 0.5, but the calculator rounds 0.5 to 1, and -0.5 to -1.
;; There is also some automatic mode switching if the number can't be
;; displayed in the 'fixed' display mode.
(defun format-for-printing (state val)
(let ((digits-after-decimal (get-display-digits state)))
(ecase (get-display-output-mode state)
(:FIXED
(render-rational-as-fix (rational val)
digits-after-decimal))
(:SCIENTIFIC
(render-rational-as-sci (rational val)
digits-after-decimal))
(:ENGINEERING
(render-rational-as-sci (rational val)
digits-after-decimal
:engineering t)))))
(defun convert-string-rep-to-rational (string)
(if (position-of-exponent-marker string)
(make-rational-from-sci-string string)
(make-rational-from-float-string string)))
(defun round-to-ultimate-precision (rval)
"Takes a rational and returns a new one, in the exact precision of the calculator (10 digits)"
(assert (rationalp rval))
(multiple-value-bind (rep in-bounds)
(render-rational-as-sci rval (1- *digits-in-display*))
(values (convert-string-rep-to-rational rep)
in-bounds)))
(defun position-of-exponent-marker (string)
(position-if #'(lambda (x)
(or (char-equal x #\e)
(char-equal x #\d))) string))
(defun perform-long-division (ratval n-digits)
"Computes the decimal expansion of the positive rational to n total digits, with appropriate rounding. Returns a list of three values. The first is a list of digits, from most to least significant. The second is the power of 10 on the first digit. The third is 1 if the least-significant digit was rounded up to that value (0 means it rounded down)."
(assert (>= ratval 0))
(assert (>= n-digits 0))
(when (= ratval 0)
(return-from perform-long-division
(list (make-list n-digits :initial-element 0) 0)))
(let ((result '())
(num (numerator ratval))
(den (denominator ratval))
(exponent 0)
carryflag)
(do ()
((>= num den))
(setf num (* 10 num))
(decf exponent))
(do ()
((< num (* 10 den)))
(setf den (* 10 den))
(incf exponent))
(cond
((> n-digits 0)
(dotimes (i n-digits)
(let ((digit (floor (/ num den))))
(push digit result)
(decf num (* digit den))
(setf num (* 10 num)))))
((= n-digits 0)
(incf exponent)
(setf result (list 0))))
(setf num (/ num 10)) ;; erase the extra power of 10 we put in
(let ((carry (if (>= (/ num den) (/ 1 2)) 1 0)))
(setf carryflag carry)
(setf result (mapcar #'(lambda (x)
(setf x (+ carry x))
(cond
((= 10 x)
(setf x 0))
(t
(setf carry 0)))
x) result))
(cond
((= carry 1)
;; rounded all the way to the beginning. Fix.
(pop result)
(setf result (reverse result))
(incf exponent)
(push 1 result))
(t
(setf result (reverse result)))))
(list result exponent carryflag)))
(defun round-long-division-result (ld-res)
"Rounds to remove the least-significant digit."
(labels
((round-up (remaining-reversed-digits expt)
(let ((carry 1)
unreversed)
(setf remaining-reversed-digits
(mapcar #'(lambda (x)
(incf x carry)
(setf carry 0)
(when (= x 10)
(setf x 0)
(setf carry 1))
x) remaining-reversed-digits))
(setf unreversed (reverse remaining-reversed-digits))
(when (= carry 1)
(push 1 unreversed)
(incf expt))
(list unreversed expt 1))))
(let* ((digits (reverse (first ld-res)))
(exponent (second ld-res))
(carryflag (third ld-res))
(least-sig (pop digits)))
(cond
(digits
(cond
((< least-sig 5)
(list (reverse digits) exponent 0))
((> least-sig 5)
(round-up digits exponent))
((= carryflag 1)
(list (reverse digits) exponent 0))
((= carryflag 0)
(round-up digits exponent))
(t
(error "bad flow, shouldn't get here"))))
;; When we reach the final digit, we round to 0 or 1, not to
;; nil
(t
(cond
((or (< least-sig 5)
(and (= least-sig 5)
(= carryflag 1)))
(list (list 0) 0 0))
(t
(list (list 1) 0 1))))))))
;; n-digits is the number after the decimal
(defun render-rational-as-sci (rval n-digits
&key
engineering
(truncating t))
"In the end, we can't trust format because of its rounding rules, and the coercion. Even going to double-float can't guarantee that we won't slip a digit in the last place. So, here we 'display' a rational number by longhand division."
(when (and truncating
(> (1+ n-digits) *digits-in-display*))
(setf n-digits (1- *digits-in-display*)))
(when (= rval 0)
(return-from render-rational-as-sci
(values (format nil "~,vFe00" n-digits 0.0) t)))
(let* ((rv (make-string-output-stream))
(sign (if (> rval 0) 1 -1))
(ld (perform-long-division (abs rval) (1+ n-digits)))
(digits (first ld))
(exponent (second ld))
(decimal-pos 1))
(when engineering
(let ((shift-right (mod exponent 3)))
(incf decimal-pos shift-right)
(decf exponent shift-right)))
(when (= sign -1)
(format rv "-"))
(dolist (dig digits)
(format rv "~D" dig)
(decf decimal-pos)
(when (= 0 decimal-pos)
(format rv ".")))
(format rv "e~A~2,'0D"
(if (< exponent 0) "-" "")
(abs exponent))
(values (get-output-stream-string rv)
(<= exponent *overflow-exponent*))))
;; The 'truncating' keyword, if non-nil, bounds the total number of
;; digits to *digits-in-display*
(defun render-rational-as-fix (rval n-digits-after-decimal
&key (truncating t))
(assert (>= n-digits-after-decimal 0))
(when (= rval 0)
(return-from render-rational-as-fix
(format nil "~,vF" n-digits-after-decimal 0.0)))
(let ((sign (if (> rval 0) 1 -1))
(rabs (abs rval))
magnitude
digits-needed)
;; Check to see if, following rounding, the number won't fit in
;; the width of the display. If so, use the scientific notation
;; function instead
(when (and truncating
(or (>= rabs (- (expt 10 *digits-in-display*) (/ 1 2)))
(< rabs (/ (expt 10 (- n-digits-after-decimal)) 2))))
(return-from render-rational-as-fix
(render-rational-as-sci rval n-digits-after-decimal
:truncating truncating)))
;; We'll use a log to estimate the magnitude, but may correct it
;; if rounding errors give the wrong result
(setf magnitude (floor (log (coerce rabs 'double-float) 10)))
(when (>= rabs (expt 10 (1+ magnitude)))
(incf magnitude))
(when (< rabs (expt 10 magnitude))
(decf magnitude))
(setf digits-needed (+ magnitude n-digits-after-decimal 1))
(let* ((ld (perform-long-division rabs digits-needed))
(digits (first ld))
(exponent (second ld))
(rv (make-string-output-stream)))
;; Cut off digits that are past the end of the display, by
;; rounding exactly
(when (and truncating
(< rabs 1))
(let ((width (+ -1 (length digits) (- exponent))))
(dotimes (i (- width (min n-digits-after-decimal
(1- *digits-in-display*))))
(setf ld (round-long-division-result ld))))
(setf digits (first ld))
(setf exponent (second ld)))
(when (and truncating
(> rabs 1))
(let ((width (length digits)))
(dotimes (i (- width *digits-in-display*))
(setf ld (round-long-division-result ld))))
(setf digits (first ld))
(setf exponent (second ld)))
;; put in leading zeroes, they aren't in the division result
(when (< sign 0)
(format rv "-"))
(when (< exponent 0)
(format rv "0.")
(dotimes (i (- -1 exponent))
(format rv "0")))
(dotimes (i (length digits))
(format rv "~D" (nth i digits))
(when (= i exponent)
(format rv ".")))
(let ((result (get-output-stream-string rv)))
(if (not (string-contains-non-zero-digit result))
(render-rational-as-sci rval n-digits-after-decimal
:truncating truncating)
result)))))
(defun make-rational-from-float-string (string)
"This all has to happen without passing through floats"
(let ((d-pos (position #\. string))
whole-part frac-part)
(cond
(d-pos
(setf whole-part (subseq string 0 d-pos))
(when (= (length whole-part) 0)
(setf whole-part "0"))
(when (< (1+ d-pos) (length string))
(setf frac-part (subseq string (1+ d-pos)))))
(t
(setf whole-part (copy-seq string))))
;; switch it from string to integer
(setf whole-part (read-from-string whole-part))
(cond
(frac-part
(let ((frac-len (length frac-part))
(divisor 1))
(dotimes (i frac-len)
(setf divisor (* 10 divisor)))
(setf frac-part (/ (read-from-string frac-part)
divisor)))
(when (< whole-part 0)
(setf frac-part (* -1 frac-part))))
(t
(setf frac-part 0)))
(+ whole-part frac-part)))
(defun make-rational-from-sci-string (string)
(destructuring-bind (sign mantissa e-sign expt)
(break-down-sci-notation string)
(let ((mant-rat (make-rational-from-float-string mantissa))
(neg-mant (string= sign "-"))
(neg-expt (string= e-sign "-"))
(expt-int (read-from-string expt))
(expt-factor 1))
(if neg-expt
(dotimes (i expt-int)
(setf expt-factor (/ expt-factor 10)))
(dotimes (i expt-int)
(setf expt-factor (* expt-factor 10))))
(* mant-rat expt-factor (if neg-mant -1 1)))))
(defun string-contains-non-zero-digit (string)
(dotimes (i (length string))
(let ((one-char (char string i)))
(when (and (digit-char-p one-char)
(char/= one-char #\0))
(return-from string-contains-non-zero-digit t))))
nil)
(defun break-down-sci-notation (string)
(let* ((negative (char= (char string 0) #\-))
(epos (position-of-exponent-marker string))
(neg-expt (char= (char string (1+ epos)) #\-))
(mantissa (subseq string
(if negative 1 0)
epos))
(expt (subseq string
(if neg-expt
(+ 2 epos)
(1+ epos)))))
(when (char= (char expt 0) #\+)
(setf expt (subseq expt 1)))
(list (if negative "-" " ")
mantissa
(if neg-expt "-" " ")
expt)))