-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
151 lines (141 loc) · 8.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from argparse import ArgumentParser
import os
import setproctitle
# Manage command line arguments
parser = ArgumentParser()
parser.add_argument("--train", default=False, action="store_true",
help="Binary flag. If set training will be performed.")
parser.add_argument("--val", default=False, action="store_true",
help="Binary flag. If set validation will be performed.")
parser.add_argument("--test", default=False, action="store_true",
help="Binary flag. If set testing will be performed.")
parser.add_argument("--cuda_devices", default="0", type=str,
help="String of cuda device indexes to be used. Indexes must be separated by a comma.")
parser.add_argument("--data_parallel", default=False, action="store_true",
help="Binary flag. If multi GPU training should be utilized set flag.")
parser.add_argument("--cpu", default=False, action="store_true",
help="Binary flag. If set all operations are performed on the CPU.")
parser.add_argument("--epochs", default=200, type=int,
help="Number of epochs to perform while training.")
parser.add_argument("--lr_schedule", default=False, action="store_true",
help="Binary flag. If set the learning rate will be reduced after epoch 50 and 100.")
parser.add_argument("--ohem", default=False, action="store_true",
help="Binary flag. If set online heard example mining is utilized.")
parser.add_argument("--ohem_fraction", default=0.75, type=float,
help="Ohem fraction to be applied when performing ohem.")
parser.add_argument("--batch_size", default=4, type=int,
help="Batch size to be utilized while training.")
parser.add_argument("--path_to_data", default="../../BCS_Data/Cell_Instance_Segmentation_Regular_Traps", type=str,
help="Path to dataset.")
parser.add_argument("--augmentation_p", default=0.6, type=float,
help="Probability that data augmentation is applied on training data sample.")
parser.add_argument("--lr_main", default=1e-04, type=float,
help="Learning rate of the detr model (excluding backbone).")
parser.add_argument("--lr_backbone", default=1e-05, type=float,
help="Learning rate of the backbone network.")
parser.add_argument("--lr_segmentation_head", default=1e-06, type=float,
help="Learning rate of the segmentation head, only applied when seg head is trained exclusively.")
parser.add_argument("--no_pac", default=False, action="store_true",
help="Binary flag. If set no pixel adaptive convolutions will be utilized in the segmentation head.")
parser.add_argument("--load_model", default="", type=str,
help="Path to model to be loaded.")
parser.add_argument("--dropout", default=0.05, type=float,
help="Dropout factor to be used in model.")
parser.add_argument("--three_classes", default=False, action="store_true",
help="Binary flag, If set three classes (trap, cell of interest and add. cells) will be utilized.")
parser.add_argument("--softmax", default=False, action="store_true",
help="Binary flag, If set a softmax will be applied to the segmentation prediction instead sigmoid.")
parser.add_argument("--only_train_segmentation_head_after_epoch", default=150, type=int,
help="Number of epoch where only the segmentation head is trained.")
parser.add_argument("--no_deform_conv", default=False, action="store_true",
help="Binary flag. If set no deformable convolutions will be utilized.")
parser.add_argument("--no_pau", default=False, action="store_true",
help="Binary flag. If set no pade activation unit is utilized, however, a leaky ReLU is utilized.")
# Get arguments
args = parser.parse_args()
# Set device type
device = "cpu" if args.cpu else "cuda"
# Set cuda devices
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_devices
setproctitle.setproctitle("Cell-DETR")
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from modules.modulated_deform_conv import ModulatedDeformConvPack
from pade_activation_unit.utils import PAU
# Avoid data loader bug
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (2 ** 12, rlimit[1]))
from detr import CellDETR
from dataset import CellInstanceSegmentation, collate_function_cell_instance_segmentation
from lossfunction import InstanceSegmentationLoss, SegmentationLoss, MultiClassSegmentationLoss
from model_wrapper import ModelWrapper
from segmentation import ResFeaturePyramidBlock, ResPACFeaturePyramidBlock
if __name__ == '__main__':
# Init detr
detr = CellDETR(num_classes=3 if args.three_classes else 2,
segmentation_head_block=ResPACFeaturePyramidBlock if not args.no_pac else ResFeaturePyramidBlock,
segmentation_head_final_activation=nn.Softmax if args.softmax else nn.Sigmoid,
backbone_convolution=nn.Conv2d if args.no_deform_conv else ModulatedDeformConvPack,
segmentation_head_convolution=nn.Conv2d if args.no_deform_conv else ModulatedDeformConvPack,
transformer_activation=nn.LeakyReLU if args.no_pau else PAU,
backbone_activation=nn.LeakyReLU if args.no_pau else PAU,
bounding_box_head_activation=nn.LeakyReLU if args.no_pau else PAU,
classification_head_activation=nn.LeakyReLU if args.no_pau else PAU,
segmentation_head_activation=nn.LeakyReLU if args.no_pau else PAU)
if args.load_model != "":
detr.load_state_dict(torch.load(args.load_model))
# Print network
print(detr)
# Print number of parameters
print("# DETR parameters", sum([p.numel() for p in detr.parameters()]))
# Init optimizer
detr_optimizer = torch.optim.AdamW(detr.get_parameters(lr_main=args.lr_main, lr_backbone=args.lr_backbone),
weight_decay=1e-06)
detr_segmentation_optimizer = torch.optim.AdamW(detr.get_segmentation_head_parameters(lr=args.lr_segmentation_head),
weight_decay=1e-06)
# Init data parallel if utilized
if args.data_parallel:
detr = torch.nn.DataParallel(detr)
# Init learning rate schedule if utilized
if args.lr_schedule:
learning_rate_schedule = torch.optim.lr_scheduler.MultiStepLR(detr_optimizer, milestones=[50, 100], gamma=0.1)
else:
learning_rate_schedule = None
# Init datasets
training_dataset = DataLoader(
CellInstanceSegmentation(path=os.path.join(args.path_to_data, "train"),
augmentation_p=args.augmentation_p, two_classes=not args.three_classes),
collate_fn=collate_function_cell_instance_segmentation, batch_size=args.batch_size, num_workers=20,
shuffle=True)
validation_dataset = DataLoader(
CellInstanceSegmentation(path=os.path.join(args.path_to_data, "val"),
augmentation_p=0.0, two_classes=not args.three_classes),
collate_fn=collate_function_cell_instance_segmentation, batch_size=1, num_workers=1, shuffle=False)
test_dataset = DataLoader(
CellInstanceSegmentation(path=os.path.join(args.path_to_data, "test"),
augmentation_p=0.0, two_classes=not args.three_classes),
collate_fn=collate_function_cell_instance_segmentation, batch_size=1, num_workers=1, shuffle=False)
# Model wrapper
model_wrapper = ModelWrapper(detr=detr,
detr_optimizer=detr_optimizer,
detr_segmentation_optimizer=detr_segmentation_optimizer,
training_dataset=training_dataset,
validation_dataset=validation_dataset,
test_dataset=test_dataset,
loss_function=InstanceSegmentationLoss(
segmentation_loss=SegmentationLoss(),
ohem=args.ohem,
ohem_faction=args.ohem_fraction),
device=device)
# Perform training
if args.train:
model_wrapper.train(epochs=args.epochs,
optimize_only_segmentation_head_after_epoch=args.only_train_segmentation_head_after_epoch)
# Perform validation
if args.val:
model_wrapper.validate(number_of_plots=30)
# Perform testing
if args.test:
model_wrapper.test()