-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandmst.c
executable file
·455 lines (407 loc) · 12.3 KB
/
randmst.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
* file: randmst.c
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "Graph.h"
void get_specs(Graph *g);
void generate_graph(Graph *g);
void optional_result(Graph *g);
void make_edge(Graph *g, int u, int v);
int size_of(Graph *g);
double edge_prob_of(Graph *g);
void dfs(Graph *g);
void dfs_visit(Graph *g, Vertex *vertex);
double running_time(clock_t start, clock_t finish);
int check_graph(Graph *g);
void Kruskal(Graph *g);
void list_all_edges(Graph *g, Edge **E);
void merge_sort(Edge **data, int first, int last);
void merge_array(Edge **edges, int first, int split, int last);
double key(Edge e);
Vertex* from_vertex(Graph *g, Edge *e);
Vertex* to_vertex(Graph *g, Edge *e);
Vertex* fast_find(Vertex *a);
void fast_union(Vertex *a, Vertex *b);
void swap(Vertex *a, Vertex *b);
/*
* main()
* Usage: randmst 0 numpoints numtrials dimension
*/
void main(int argc, char *argv[]) {
int i;
/* check for proper number of command line args */
if (argc != 5) {
fprintf(stderr, "Usage: %s 0(or -d) numpoints numtrials dimension\n", argv[0]);
exit(EXIT_FAILURE);
}
/* check the second argument to see if it 0 or an option; -d */
if (strcmp("-d", argv[1]) == 0) {
Graph G;
get_specs(&G);
generate_graph(&G);
dfs(&G);
if (check_graph(&G)) {
printf("WARNING : This graph is disconncted\n\n");
}
Kruskal(&G);
optional_result(&G);
free(G.vertices);
} else {
int a_size;
double total_weight;
unsigned long int total_average;
a_size = atoi(argv[2]); /* number of vertices */
numtrials = atoi(argv[3]); /* number of trials */
dimension = atoi(argv[4]); /* dimension of graph */
/* used to get the average MST weight over the trials */
total_average = 0;
total_weight = 0;
for (i = 0; i <= numtrials; i++) {
Graph G;
memset(&G, 0, sizeof(Graph));
G.size = a_size;
G.num_vertices_alloc = (G.size * (G.size - 1))/2 * 2;
G.vertices = (Vertex *)calloc(G.num_vertices_alloc, sizeof(Vertex));
if (G.vertices == NULL) {
printf("Error in allocation space for g->vertices\n");
exit(EXIT_FAILURE);
}
G.edge_prob = 0.5;
generate_graph(&G);
dfs(&G);
if (check_graph(&G)) {
printf("WARNING : This graph is disconncted\n\n");
}
else
Kruskal(&G);
total_average += G.num_edges;
total_weight += G.Kruskal_weight;
free(G.vertices);
}
printf("%lf %i %i %i\n", (total_weight/numtrials), a_size, numtrials, dimension);
}
}
/* simple function used to swap two objects */
void swap(Vertex *a, Vertex *b) {
Vertex *temp;
temp = a;
a = b;
b = temp;
}
/* find the root vertex */
Vertex* fast_find(Vertex *a) {
Vertex *root;
Vertex *traveling_ptr;
Vertex *temp_ptr;
traveling_ptr = a; /* find the root of a */
while (traveling_ptr->kruskal_parent != NULL) {
traveling_ptr = traveling_ptr->kruskal_parent;
}
root = traveling_ptr;
/* make all vertices along the path from a to the root point directly to the root */
traveling_ptr = a;
while (traveling_ptr->kruskal_parent != NULL) {
temp_ptr = traveling_ptr;
traveling_ptr = traveling_ptr->kruskal_parent;
temp_ptr->kruskal_parent = root;
}
return root;
}
/* Fast-Union find */
void fast_union(Vertex *a, Vertex *b) {
if (a->component_size > b->component_size)
swap (a, b);
a->kruskal_parent = b;
b->component_size += a->component_size;
}
double key (Edge e) {
return e.weight;
}
/* performs most of the work of the mergesort routine */
void merge_array(Edge **edges, int first, int split, int last) {
int index = first;
int left_tracer = first;
int right_tracer = split + 1;
Edge *temp;
/* allocate a block of memory and clear it */
temp = (Edge *)calloc(last + 1, sizeof(Edge));
while (left_tracer <= split && right_tracer <= last) {
if (key((*edges)[left_tracer]) < key ((*edges)[right_tracer]))
memcpy(&(temp[index++]), &((*edges)[left_tracer++]), sizeof(Edge));
else
memcpy(&(temp[index++]), &((*edges)[right_tracer++]), sizeof(Edge));
}
while (right_tracer <= last) {
memcpy(&(temp[index++]), &((*edges)[right_tracer++]), sizeof(Edge));
}
while (left_tracer <= split) {
memcpy(&(temp[index++]), &((*edges)[left_tracer++]), sizeof(Edge));
}
/* copy the array back */
for (index = first; index <= last; index++) {
memcpy(&((*edges)[index]), &(temp[index]), sizeof(Edge));
}
free(temp);
}
/*********************************
* Mergesort routine begins here *
*********************************/
void merge_sort(Edge **data, int first, int last) {
int split;
if (first < last) {
split = (first + last) /2;
merge_sort(data, first, split);
merge_sort(data, split + 1, last);
merge_array(data, first, split, last);
}
}
/****************************
* End of mergesort routine *
****************************/
/* list all the edges */
void list_all_edges(Graph *g, Edge **E) {
long vert_index;
Vertex *current_vertex;
Edge *current_edge;
long total_edges = 0;
long edges_cnt = 0;
for (vert_index = 0; vert_index < size_of(g); vert_index++) {
current_vertex = &(g->vertices[vert_index]);
total_edges += current_vertex->num_edges;
}
/* Allocate memory for *E -- increase size by 1/4 just in case */
total_edges = total_edges/4 + total_edges;
*E = (Edge *)calloc(total_edges, sizeof(Edge));
if (*E == NULL) {
printf("Not enough memory for the edges\n");
exit (EXIT_FAILURE);
}
for (vert_index = 0; vert_index < size_of(g); vert_index++) {
current_vertex = &(g->vertices[vert_index]);
for (current_edge = current_vertex->adj_list; current_edge != NULL; current_edge = current_edge->next) {
(*E)[edges_cnt].u_edge = current_edge->u_edge;
(*E)[edges_cnt].v_edge = current_edge->v_edge;
(*E)[edges_cnt].weight = current_edge->weight;
++edges_cnt;
assert(edges_cnt < total_edges);
}
}
}
/***********************************
* Kruskal's algorithm begins here *
***********************************/
void Kruskal(Graph *g) {
Edge *A = NULL;
Edge *current_edge;
Vertex *a, *b;
Vertex *a_root, *b_root;
clock_t start_sort, finish_sort;
clock_t start_Kruskal, finish_Kruskal;
unsigned long int index;
list_all_edges(g, &A);
start_sort = clock(); /* clock the time it takes merge_sort */
merge_sort(&A, 0, g->num_edges - 1);
finish_sort = clock();
sort_time = running_time(start_sort, finish_sort);
start_Kruskal = clock();
for (index = 0; index < g->num_edges; index++) {
current_edge = &(A[index]);
a = to_vertex(g, current_edge);
b = from_vertex(g, current_edge);
/* We are working with the edge (a, b) */
if ((a_root = fast_find(a)) != (b_root = fast_find(b))) {
fast_union (a_root, b_root);
g->Kruskal_weight += current_edge->weight;
}
}
finish_Kruskal = clock();
Kruskal_time = running_time(start_Kruskal, finish_Kruskal);
}
/******************************
* End of Kruskal's algorithm *
******************************/
/* return the start of an edge */
Vertex *to_vertex(Graph *g, Edge *e) {
return &(g->vertices[e->u_edge]);
}
/* return the end of an edge */
Vertex *from_vertex(Graph *g, Edge *e) {
return &(g->vertices[e->v_edge]);
}
/* chekc if the mst is connected */
int check_graph(Graph *g) {
if (g->dfs_trees == 1)
return 0;
return 1;
}
/* record running times of algorithms */
double running_time(clock_t start, clock_t finish) {
return ((double) (finish - start)) * 1000/CLOCKS_PER_SEC;
}
/***************************
* DFS routine begins here *
***************************/
void dfs(Graph *g) {
Vertex *vertex;
int node_number;
clock_t start_dfs;
clock_t finish_dfs;
start_dfs = clock();
for (node_number = 0; node_number < size_of(g); node_number++) {
vertex = &(g->vertices[node_number]);
if (vertex->Color == white) {
(g->dfs_trees)++;
dfs_visit(g, vertex);
}
}
finish_dfs = clock();
dfs_time = running_time(start_dfs, finish_dfs);
}
void dfs_visit(Graph *g, Vertex *u) {
Edge *current_edge;
Vertex *v;
/* White vertex u has been discovered */
u->Color = gray;
u->discovery_time = ++timestamp;
for (current_edge = u->adj_list; current_edge != NULL; current_edge = current_edge->next) {
v = &(g->vertices[current_edge->v_edge]);
/* Explore edge (u, v) */
if (g->vertices[current_edge->v_edge].Color == white) {
g->dfs_weight += current_edge->weight;
g->vertices[current_edge->v_edge].parent = u;
dfs_visit(g, &(g->vertices[current_edge->v_edge]));
}
}
u->Color = black; /* u is finished */
u->finish_time = ++timestamp;
}
/**********************
* End of DFS routine *
**********************/
/* return the size of the graph */
int size_of(Graph *g) {
return g->size;
}
/* edge probability */
double edge_prob_of(Graph *g) {
return g->edge_prob;
}
/* create edge in the graphs */
void make_edge(Graph *g, int u, int v) {
/* used to hold values for calculating the Euclidean dist. */
double x1, x2, y1, y2;
double X, Y;
double Euclidean_distance;
Edge *edge;
void *oldvertices;
unsigned long oldsize;
assert(u < g->size && v < g->size);
if (u > g->num_vertices_alloc) {
/* reallocate g->vertices */
oldsize = g->num_vertices_alloc * sizeof(Vertex);
g->num_vertices_alloc = g->num_vertices_alloc * 2;
oldvertices = g->vertices;
g->vertices = (Vertex *)calloc(g->num_vertices_alloc, sizeof(Vertex));
if (g->vertices == NULL) {
printf("Error in increase allocation space for g->vertices\n");
exit(EXIT_FAILURE);
}
memmove(g->vertices, oldvertices, oldsize);
free(oldvertices);
}
/* allocate memory for the edges */
if ((edge = (Edge *)malloc(sizeof(Edge))) == NULL) {
printf("Not enough memory for edge creation\n");
exit(EXIT_FAILURE);
}
edge->u_edge = u;
edge->v_edge = v;
/*
* Generate the appropriate graph
* If the dimension is 0 then generate a random weight [0,1]
*/
if (dimension == 0)
edge->weight = (double)rand()/(RAND_MAX + 1);
/*
* If the dimension is 2 then generate a random vertices w/in the unit
* square.
*/
else if (dimension == 2) {
x1 = (double)rand()/(RAND_MAX + 1);
y1 = (double)rand()/(RAND_MAX + 1);
x2 = (double)rand()/(RAND_MAX + 1);
y2 = (double)rand()/(RAND_MAX + 1);
X = (x2 - x1);
Y = (y2 - y1);
Euclidean_distance = sqrt((X * X) + (Y * Y));
edge->weight = Euclidean_distance;
} else {
fprintf(stderr, "usage: The dimension must be 0 or 2.\n");
exit(EXIT_FAILURE);
}
/* keep numbers greater than 0 */
if (edge->weight < 0)
edge->weight = edge->weight * -1;
edge->next = NULL;
/* find u vertex in g */
(g->vertices)[u].num_edges++;
if ((g->vertices)[u].adj_list == NULL)
(g->vertices)[u].adj_list = edge;
else
(g->vertices)[u].last_edge->next = edge;
(g->vertices)[u].last_edge = edge;
}
/*
* If the user specifies the -d option as the second argument then the user is
* prompted. 0.5 should be entered for the edge-probability
*/
void get_specs(Graph *g) {
unsigned long v_size;
memset(g, 0, sizeof(*g));
printf("Enter the desired number of vertices: \n");
scanf("%i", &(g->size));
printf("Enter the probability of a given edge belonging to the graph as a decimal: \n");
scanf("%lf", &(g->edge_prob));
g->num_vertices_alloc = (g->size * (g->size - 1))/2 * 2;
v_size = g->num_vertices_alloc * sizeof(Vertex);
g->vertices = (Vertex *)calloc(g->num_vertices_alloc, sizeof(Vertex));
if (g->vertices == NULL) {
printf("Error in allocation space for g->vertices\n");
exit(1);
}
}
/**************************************
* Random Graph Generator begins here *
**************************************/
void generate_graph(Graph *g) {
int u, v;
srand((unsigned int)(time(NULL) % 10000));
for (u = 0; u < size_of(g); u++) {
for (v = u + 1; v < size_of(g); v++) {
if ((rand()/(RAND_MAX + 1)) <= 1) {
make_edge(g, u, v);
make_edge(g, v, u);
(g->num_edges)++;
}
}
}
}
/*********************************
* End of random graog generator *
*********************************/
/* Displays the runtime of each routine */
void optional_result(Graph *g) {
printf("The number of vertices generated in the graph: %i \n", g->size);
printf("The number of edges generated in the graph: %i \n", g->num_edges);
printf("It took %lf milliseconds to sort them\n", sort_time);
printf("The depth-first search took %lf milliseconds\n", dfs_time);
printf("\tand produced a tree of weight %lf.\n", g->dfs_weight);
printf("The second half of the Kruskal's algorithm took %lf milliseconds\n", Kruskal_time);
printf("\tand produced a MST of weight %lf.\n", g->Kruskal_weight);
}