forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasktrack_rcnn_r50_fpn_12e_youtubevis2019.py
68 lines (67 loc) · 2.31 KB
/
masktrack_rcnn_r50_fpn_12e_youtubevis2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
_base_ = [
'../../_base_/models/mask_rcnn_r50_fpn.py',
'../../_base_/datasets/youtube_vis.py', '../../_base_/default_runtime.py'
]
model = dict(
type='MaskTrackRCNN',
detector=dict(
roi_head=dict(
bbox_head=dict(num_classes=40), mask_head=dict(num_classes=40)),
train_cfg=dict(
rpn=dict(sampler=dict(num=64)),
rpn_proposal=dict(nms_pre=200, max_per_img=200),
rcnn=dict(sampler=dict(num=128))),
test_cfg=dict(
rpn=dict(nms_pre=200, max_per_img=200), rcnn=dict(score_thr=0.01)),
init_cfg=dict(
type='Pretrained',
checkpoint= # noqa: E251
'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa: E501
)),
track_head=dict(
type='RoITrackHead',
roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
embed_head=dict(
type='RoIEmbedHead',
num_fcs=2,
roi_feat_size=7,
in_channels=256,
fc_out_channels=1024),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=128,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
tracker=dict(
type='MaskTrackRCNNTracker',
match_weights=dict(det_score=1.0, iou=2.0, det_label=10.0),
num_frames_retain=20))
# optimizer
optimizer = dict(type='SGD', lr=0.00125, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
# runtime settings
total_epochs = 12
evaluation = dict(metric=['track_segm'], interval=13)