-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.java
278 lines (204 loc) · 10.5 KB
/
Main.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package com.hortonworks.example;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
import java.io.File;
import java.io.Serializable;
import java.util.*;
import org.apache.commons.math3.distribution.UniformRealDistribution;
/**
* TODO
* add functions
* add a start and stop timer for benchmarking
* add kryo serializer
*/
public class Main implements Serializable{
private static JavaSparkContext sc = null;
private static SQLContext sqlContext = null;
final int NUM_TRIALS = 1;
JavaPairRDD<String, String> symbolsAndWeightsRDD = null;
Map<String, Float> symbolsAndWeights;
Float totalInvestement;
public static void main(String[] args) throws Exception {
Main m = new Main();
String listOfCompanies = new File("companies_list.txt").toURI().toString();
String stockDataDir = "hdfs://sandbox.hortonworks.com/tmp/stockData/*.csv";
if (sc == null) {
SparkConf conf = new SparkConf().setAppName("monte-carlo-var-calculator");
sc = new JavaSparkContext(conf);
sqlContext = new org.apache.spark.sql.SQLContext(sc);
}
if (args.length > 0) {
listOfCompanies = args[0];
}
if (args.length > 1) {
stockDataDir = args[1];
}
JavaRDD<String> filteredFileRDD = sc.textFile(listOfCompanies).filter(s -> !s.startsWith("#") && !s.trim().isEmpty());
m.run(args,filteredFileRDD,stockDataDir);
m.close();
}
void close() {
sc.stop();
}
void redistribute(JavaRDD<String> filteredFileRDD,float amt)
{
Set<Integer> arl = new HashSet<Integer>();
// Random r = new Random();
//// TODO make sure there are no duplicates
// while(arl.size()<4){
// arl.add(r.nextInt((10 - 1) + 1) + 1);
// }
UniformRealDistribution urd = new UniformRealDistribution(0,11);
while(arl.size()<4){
arl.add((int)urd.sample());
}
float w =0.25f;
symbolsAndWeightsRDD = filteredFileRDD.filter(s -> !s.startsWith("Symbol")).mapToPair(s ->
{
String[] splits = s.split(",", -2);
if (arl.contains(Integer.parseInt(splits[0])))
return new Tuple2<>(splits[1], "$"+(amt*0.25));
else
return new Tuple2<>(splits[1], "$0");
});
symbolsAndWeightsRDD.take(10).forEach(x -> System.out.println(x._1() + "->" + x._2()));
if (symbolsAndWeightsRDD.first()._2().contains("$")) {
JavaPairRDD<String, Float> symbolsAndDollarsRDD = symbolsAndWeightsRDD.mapToPair(x -> new Tuple2<>(x._1(), new Float(x._2().replaceAll("\\$", ""))));
totalInvestement = symbolsAndDollarsRDD.reduce((x, y) -> new Tuple2<>("total", x._2()+y._2()))._2().floatValue();
// totalInvestement = symbolsAndDollarsRDD.reduce((x, y) -> new Tuple2<>("total", x._2() + y._2()))._2().longValue();
symbolsAndWeights = symbolsAndDollarsRDD.mapToPair(x -> new Tuple2<>(x._1(), (x._2() / totalInvestement))).collectAsMap();
symbolsAndWeights.forEach((s, f) -> System.out.println("symbol: " + s + ", % of portfolio: " + f));
} else {
totalInvestement = 1000.0f;
symbolsAndWeights = symbolsAndWeightsRDD.mapToPair(x -> new Tuple2<>(x._1(), new Float(x._2()))).collectAsMap();
}
//debug
System.out.println("symbolsAndWeights");
System.out.println("TOTAL=============="+totalInvestement);
symbolsAndWeights.forEach((s, f) -> System.out.println("symbol: " + s + ", % of portfolio: " + f));
}
Object run(String[] args, JavaRDD<String> filteredFileRDD,String stockDataDir) {
/*
Initializations
*/
/*
read a list of stock symbols and their weights in the portfolio, then transform into a Map<Symbol,Weight>
1. read in the data, ignoring header
2. convert dollar amounts to fractions
3. create a local map
*/
float amt= 1000.0f;
redistribute(filteredFileRDD,amt);
//convert from $ to % weight in portfolio
/*
read all stock trading data, and transform
1. get a PairRDD of date -> (symbol, changeInPrice)
2. reduce by key to get all dates together
3. filter every date that doesn't have the max number of symbols
\ */
// 1. get a PairRDD of date -> Tuple2(symbol, changeInPrice)
JavaPairRDD<String, Tuple2> datesToSymbolsAndChangeRDD = sc.textFile(stockDataDir).filter(s -> !s.contains("Change_Pct")).mapToPair(x -> {
//skip header
// if (x.contains("Change_Pct")) {
//// return Collections.EMPTY_LIST;
// return Collections.singletonList(new Tuple2<>("2017-12-01", new Tuple2<>("GE", 0.0)));
//
// }
String[] splits = x.split(",", -2);
Float changeInPrice = new Float(splits[8]);
String symbol = splits[7];
String date = splits[0];
// return Collections.singletonList(new Tuple2<>(date, new Tuple2<>(symbol, changeInPrice)));
return new Tuple2<>(date, new Tuple2<>(symbol, changeInPrice));
});
// //debug
// datesToSymbolsAndChangeRDD.take(10).forEach(x -> System.out.println(x._1() + "->" + x._2()));
//
// //2. reduce by key to get all dates together
JavaPairRDD<String, Iterable<Tuple2>> groupedDatesToSymbolsAndChangeRDD = datesToSymbolsAndChangeRDD.groupByKey();
// //debug
// //3. filter every date that doesn't have the max number of symbols
long numSymbols = symbolsAndWeightsRDD.count();
// Map<String, Object> countsByDate = datesToSymbolsAndChangeRDD.countByKey();
JavaPairRDD<String, Iterable<Tuple2>> filterdDatesToSymbolsAndChangeRDD = groupedDatesToSymbolsAndChangeRDD;
// JavaPairRDD<String, Iterable<Tuple2>> filterdDatesToSymbolsAndChangeRDD = groupedDatesToSymbolsAndChangeRDD.filter(x -> (Long) countsByDate.get(x._1()) >= numSymbols);
long numEvents = filterdDatesToSymbolsAndChangeRDD.count();
//debug
System.out.println("num symbols: " + numSymbols);
// filterdDatesToSymbolsAndChangeRDD.take(10).forEach(x -> System.out.println(x._1() + "->" + x._2()));
/*
execute NUM_TRIALS
1. pick a random date from the list of historical trade dates
2. sum(stock weight in overall portfolio * change in price on that date)
*/
double fraction = 1.0 * NUM_TRIALS / numEvents;
Float total;
Map<String, Iterable<Tuple2>> newmap = new TreeMap<String, Iterable<Tuple2>>();
Map<String, Float> trialsMap = new TreeMap<String, Float>();
groupedDatesToSymbolsAndChangeRDD.take(10).forEach(i ->
newmap.put(i._1(), i._2())
);
// JavaPairRDD<String, Float> resultOfTrials = groupedDatesToSymbolsAndChangeRDD.mapToPair(i -> {
for (String k: newmap.keySet()) {
total = 0f;
Float compChange = 0.0f;
for (Tuple2 t : newmap.get(k)) {
String symbol = t._1().toString();
Float changeInPrice = new Float(t._2().toString());
Float weight = symbolsAndWeights.get(symbol);
compChange += changeInPrice;
total += changeInPrice * weight;
//debug
System.out.println("on " + k + " " + symbol + " with weight " + weight + " changed by " + changeInPrice
+ " for a total of " + total);
}
if (total < 1.2) {
redistribute(filteredFileRDD,amt*((total/100.0f)+1));
}
trialsMap.put(k, total);
}
List<Tuple2<String,Float>> list = new ArrayList<>();
for(Map.Entry<String,Float> entry : trialsMap.entrySet()){
list.add(new Tuple2<>(entry.getKey(),entry.getValue()));
}
JavaPairRDD<String, Float> resultOfTrials = sc.parallelizePairs(list);
// //debug
System.out.println("fraction: " + fraction);
System.out.println("total runs: " + resultOfTrials.count());
resultOfTrials.take(10).forEach(System.out::println);
/*
create a temporary table out of the data and take the 5%, 50%, and 95% percentiles
1. multiple each float by 100
2. create an RDD with Row types
3. Create a schema
4. Use that schema to create a data frame
5. execute Hive percentile() SQL function
*/
JavaRDD<Row> resultOfTrialsRows = resultOfTrials.map(x -> RowFactory.create(x._1(), Math.round(x._2() * 100)));
resultOfTrialsRows.take(10).forEach(x -> System.out.println(x));
StructType schema = DataTypes.createStructType(new StructField[]{DataTypes.createStructField("date", DataTypes.StringType, false), DataTypes.createStructField("changePct", DataTypes.IntegerType, false)});
// DataFrame resultOfTrialsDF = sqlContext.createDataFrame(resultOfTrialsRows, schema);
Dataset<Row> resultOfTrialsDF = sqlContext.createDataFrame(resultOfTrialsRows, schema);
resultOfTrialsDF.registerTempTable("results");
List<Row> percentilesRow = sqlContext.sql("select percentile(changePct, array(0.05,0.50,0.95)) from results").collectAsList();
System.out.println(sqlContext.sql("select * from results order by changePct").collectAsList());
float worstCase = new Float(percentilesRow.get(0).getList(0).get(0).toString()) / 100;
float mostLikely = new Float(percentilesRow.get(0).getList(0).get(1).toString()) / 100;
float bestCase = new Float(percentilesRow.get(0).getList(0).get(2).toString()) / 100;
System.out.println("Over the time period, this is what could happen to your stock holdings if you have $" + amt + " invested");
System.out.println(String.format("%25s %7s %7s", "", "$", "%"));
System.out.println(String.format("%25s %7d %7.2f%%", "worst case", Math.round(amt * worstCase / 100), worstCase));
System.out.println(String.format("%25s %7d %7.2f%%", "most likely scenario", Math.round(amt * mostLikely / 100), mostLikely));
System.out.println(String.format("%25s %7d %7.2f%%", "best case", Math.round(amt * bestCase / 100), bestCase));
// return worstCase;
resultOfTrialsRows.saveAsTextFile(args[2]);
return 0.0;
}
}