-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
60 lines (51 loc) · 2.33 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding:utf-8 -*-
from __future__ import print_function
from model import sport_model
from trainer import trainer
from dataset import dataset
from config import config
import torch.nn as nn
import torch.optim as optim
import time
import os
device = config.device
feature_extract = config.feature_extract
num_epochs = config.epoch_nums
model_save_path = config.config_model_save_path
class_nums = config.train_class_nums
pre_train_model_name = config.pre_train_model_name
pre_train_model_path = config.pre_train_model_path
cuda_flag = config.cuda_flag
model_type = config.train_type
if __name__ == "__main__":
os.makedirs(model_save_path, exist_ok=True)
if pre_train_model_name == "LeNet":
model = sport_model.LeNet(class_nums).to(device)
else:
model = sport_model.SportModel(class_nums, pre_train_model_name, pre_train_model_path,
feature_extract).model.to(device)
params_to_update = model.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name, param in model.named_parameters():
if param.requires_grad:
params_to_update.append(param)
print("\t", name)
else:
for name, param in model.named_parameters():
if param.requires_grad:
print("\t", name)
optimizer_ft = optim.Adam(params_to_update, lr=0.001)
criterion = nn.CrossEntropyLoss()
data_loader = dataset.DataLoader()
time_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
model_str = model_type + "_%s_%s.pth" % (pre_train_model_name, time_str)
log_save_path = os.path.join(model_save_path, model_str.replace(".pth", "_log.txt"))
is_inception = pre_train_model_name == "inception"
silent_detect_model, hist = trainer.ModelTrainer.train_sport_model(model, data_loader.dataloaders_dict, criterion,
optimizer_ft, num_epochs=num_epochs, is_inception=is_inception,
model_save_path=os.path.join(model_save_path, model_str),
log_save_path= log_save_path)
# save model
print("train model done, save model to %s" % os.path.join(model_save_path, model_str))