Skip to content

Latest commit

 

History

History
108 lines (78 loc) · 4.76 KB

README.md

File metadata and controls

108 lines (78 loc) · 4.76 KB

CF-ViT: A General Coarse-to-Fine Method for Vision Transformer (AAAI 2023 Oral)

This is Pytorch implementation of our paper "CF-ViT: A General Coarse-to-Fine Method for Vision Transformer".

Pre-trained Models

Backbone # of Coarse Seage Accuracy(threshold=1) Checkpoints Links Logs Links
DeiT-S 7x7 80.8 Google Drive Google Drive
DeiT-S 9x9 81.9 Google Drive Google Drive
LV-ViT-S 7x7 83.6 Google Drive Google Drive
LV-ViT-S 9x9 84.4 Google Drive Google Drive
  • What are contained in the checkpoints:
**.pth
├── model: state dictionaries of the model
├── flop: a list containing the GFLOPs corresponding to exiting at each stage
├── anytime_classification: Top-1 accuracy of each stage
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.9.7
  • pytorch 1.10.1
  • torchvision 0.11.2
  • apex

Data Preparation

  • The ImageNet dataset should be prepared as follows:
ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 2)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 2)
│   ├── ...

Evaluate Pre-trained Models

  • Get accuracy of each stage
CUDA_VISIBLE_DEVICES=0 python dynamic_inference.py --eval-mode 0 --data_url PATH_TO_IMAGENET  --batch_size 64 --model {cf_deit_small, cf_lvvit_small} --checkpoint_path PATH_TO_CHECKPOINT  --coarse-stage-size {7,9} 

  • Infer the model on the validation set with various threshold([0.01:1:0.01])
CUDA_VISIBLE_DEVICES=0 python dynamic_inference.py --eval-mode 1 --data_url PATH_TO_IMAGENET  --batch_size 64 --model {cf_deit_small, cf_lvvit_small} --checkpoint_path PATH_TO_CHECKPOINT  --coarse-stage-size {7,9} 

  • Infer the model on the validation set with one threshold and meature the throughput
CUDA_VISIBLE_DEVICES=0 python dynamic_inference.py --eval-mode 2 --data_url PATH_TO_IMAGENET  --batch_size 1024 --model {cf_deit_small, cf_lvvit_small} --checkpoint_path PATH_TO_CHECKPOINT  --coarse-stage-size {7,9} --threshold THRESHOLD

  • Read the evaluation results saved in pre-trained models
CUDA_VISIBLE_DEVICES=0 python dynamic_inference.py --eval-mode 3 --data_url PATH_TO_IMAGENET  --batch_size 64 --model {cf_deit_small, cf_lvvit_small} --checkpoint_path PATH_TO_CHECKPOINT  --coarse-stage-size {7,9} 

Train

  • Train CF-ViT(DeiT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_deit.py  --model cf_deit_small --batch-size 256 --data-path PATH_TO_IMAGENET --coarse-stage-size {7,9} --dist-eval --output PATH_TO_LOG

  • Train CF-ViT(LV-ViT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_lvvit.py PATH_TO_IMAGENET --model cf_lvvit_small -b 256 --apex-amp --drop-path 0.1 --token-label --token-label-data PATH_TO_TOKENLABEL --model-ema --eval-metric top1_f --coarse-stage-size {7,9} --output PATH_TO_LOG

Visualization

  • Visualization of images correctly classified at coarse stage and fine stage.
python visualize.py --model cf_deit_small --resume  PATH_TO_CHECKPOINT --output_dir PATH_TP_SAVE --data-path PATH_TO_IMAGENET --batch-size 64 

  • Other drawing code can be found in draw_picture.ipynb

Citation

@inproceedings{CFViT,
  title={CF-ViT: A General Coarse-to-Fine Method for Vision Transformer},
  author={Mengzhao Chen and Mingbao Lin and Ke Li and Yunhang Shen and Yongjian Wu and Fei Chao and Rongrong Ji},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={37}
}

Acknowledgment

Our code of LV-ViT is from here. Our code of DeiT is from here. The visualization code is modified from Evo-ViT. The dynamic inference with early-exit code is modified from DVT. Thanks to these authors.