forked from arc53/DocsGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
settings.py
83 lines (67 loc) · 3.64 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from pathlib import Path
from typing import Optional
import os
from pydantic_settings import BaseSettings
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class Settings(BaseSettings):
LLM_NAME: str = "docsgpt"
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
MODEL_TOKEN_LIMITS: dict = {"gpt-3.5-turbo": 4096, "claude-2": 1e5}
UPLOAD_FOLDER: str = "inputs"
PARSE_PDF_AS_IMAGE: bool = False
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant" or "milvus" or "lancedb"
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
# LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2"
API_URL: str = "http://localhost:7091" # backend url for celery worker
API_KEY: Optional[str] = None # LLM api key
EMBEDDINGS_KEY: Optional[str] = None # api key for embeddings (if using openai, just copy API_KEY)
OPENAI_API_BASE: Optional[str] = None # azure openai api base url
OPENAI_API_VERSION: Optional[str] = None # azure openai api version
AZURE_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for answering
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for embeddings
OPENAI_BASE_URL: Optional[str] = None # openai base url for open ai compatable models
# elasticsearch
ELASTIC_CLOUD_ID: Optional[str] = None # cloud id for elasticsearch
ELASTIC_USERNAME: Optional[str] = None # username for elasticsearch
ELASTIC_PASSWORD: Optional[str] = None # password for elasticsearch
ELASTIC_URL: Optional[str] = None # url for elasticsearch
ELASTIC_INDEX: Optional[str] = "docsgpt" # index name for elasticsearch
# SageMaker config
SAGEMAKER_ENDPOINT: Optional[str] = None # SageMaker endpoint name
SAGEMAKER_REGION: Optional[str] = None # SageMaker region name
SAGEMAKER_ACCESS_KEY: Optional[str] = None # SageMaker access key
SAGEMAKER_SECRET_KEY: Optional[str] = None # SageMaker secret key
# prem ai project id
PREMAI_PROJECT_ID: Optional[str] = None
# Qdrant vectorstore config
QDRANT_COLLECTION_NAME: Optional[str] = "docsgpt"
QDRANT_LOCATION: Optional[str] = None
QDRANT_URL: Optional[str] = None
QDRANT_PORT: Optional[int] = 6333
QDRANT_GRPC_PORT: int = 6334
QDRANT_PREFER_GRPC: bool = False
QDRANT_HTTPS: Optional[bool] = None
QDRANT_API_KEY: Optional[str] = None
QDRANT_PREFIX: Optional[str] = None
QDRANT_TIMEOUT: Optional[float] = None
QDRANT_HOST: Optional[str] = None
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
# Milvus vectorstore config
MILVUS_COLLECTION_NAME: Optional[str] = "docsgpt"
MILVUS_URI: Optional[str] = "./milvus_local.db" # milvus lite version as default
MILVUS_TOKEN: Optional[str] = ""
# LanceDB vectorstore config
LANCEDB_PATH: str = "/tmp/lancedb" # Path where LanceDB stores its local data
LANCEDB_TABLE_NAME: Optional[str] = "docsgpts" # Name of the table to use for storing vectors
BRAVE_SEARCH_API_KEY: Optional[str] = None
FLASK_DEBUG_MODE: bool = False
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")