-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
388 lines (279 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from asyncore import write
from dis import dis
import os
from statistics import mean
from models.nn1 import Generator, Discriminator, init_net
import torch.nn as nn
import torch
from alive_progress import alive_bar
from data import HCPDataset
from torch.utils.data import DataLoader
from models.loss import TVLoss
from einops import rearrange
from tqdm import tqdm
import numpy as np
from tensorboardX import SummaryWriter
class Trainer():
def __init__(self, args) -> None:
self.mode = args.mode
self.running_mode = args.running_mode
self.args = args
self.epoch_num = args.epoch_num
self.disp_batch = args.disp_batch
self.save_ckpt_freq = args.save_ckpt_freq
self.model_save_path = args.model_save_path
self.lr_G = args.lr_G
self.lr_D = args.lr_D
self.beta1 = args.beta1
self.wgt_l1 = args.wgt_l1
self.wgt_adv = args.wgt_adv
self.wgt_tv = args.wgt_tv
self.batch_size = args.batch_size
self.num_workers = args.num_workers
self.train_log_dir = args.train_log_dir
self.val_log_dir = args.val_log_dir
self.log_port = args.log_port
# self.gpu_ids = args.gpu_ids
str_ids = args.gpu_ids.split(',')
self.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
self.gpu_ids.append(id)
if self.gpu_ids and torch.cuda.is_available():
self.device = torch.device(f"cuda:{self.gpu_ids[0]}")
torch.cuda.set_device(self.gpu_ids[0])
else:
self.device = torch.device("cpu")
def save(self, netG, netD, optimG, optimD, epoch):
if not os.path.exists(self.model_save_path):
os.makedirs(self.model_save_path)
torch.save({'netG': netG.state_dict(),
'netD': netD.state_dict(),
'optimG': optimG.state_dict(),
'optimD': optimD.state_dict()},
f'{self.model_save_path}/model_epoch{epoch}.pth'
)
def load(self, model_save_path, netG, netD=[], optimG=[], optimD=[], epoch=[], mode='train'):
if not epoch:
ckpt = os.listdir(model_save_path)
ckpt.sort()
epoch = int(ckpt[-1].split('epoch')[1].split('.pth')[0])
ckpt_path = f"{model_save_path}/model_epoch{epoch}.pth"
print(ckpt_path)
ckpt_dict = torch.load(ckpt_path)
if mode == "train":
netG.load_state_dict(ckpt_dict['netG'])
netD.load_state_dict(ckpt_dict['netD'])
optimG.load_state_dict(ckpt_dict['optimG'])
optimD.load_state_dict(ckpt_dict['optimD'])
return netG, netD, optimG, optimD, epoch
elif mode == "test":
netG.load_state_dict(ckpt_dict['netG'])
return netG, epoch
def train(self):
running_mode = self.running_mode
epoch_num = self.epoch_num
disp_batch = self.disp_batch
save_ckpt_freq = self.save_ckpt_freq
lr_G = self.lr_G
lr_D = self.lr_D
wgt_l1 = self.wgt_l1
wgt_adv = self.wgt_adv
wgt_tv =self.wgt_tv
batch_size = self.batch_size
num_workers = self.num_workers
gpu_ids = self.gpu_ids
device = self.device
train_log_dir = self.train_log_dir
val_log_dir = self.val_log_dir
log_port = self.log_port
netG = Generator()
netD = Discriminator(nch_in=64, nch_ker=64)
init_net(netG, gpu_ids=gpu_ids)
init_net(netD, gpu_ids=gpu_ids)
loss_l1 = nn.L1Loss().to(device)
loss_adv = nn.BCEWithLogitsLoss().to(device)
loss_tv = TVLoss().to(device)
paramsG = netG.parameters()
paramsD = netD.parameters()
optimG = torch.optim.Adam(paramsG, lr=lr_G, betas=(self.beta1, 0.999))
optimD = torch.optim.Adam(paramsD, lr=lr_D, betas=(self.beta1, 0.999))
train_dataset = HCPDataset(self.args, "train")
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=num_workers)
val_dataset = HCPDataset(self.args, "val")
val_dataloader = DataLoader(val_dataset, batch_size, shuffle=False, num_workers=num_workers)
start_epoch = 0
write_train = SummaryWriter(log_dir=train_log_dir)
write_val = SummaryWriter(log_dir=val_log_dir)
for epoch in range(start_epoch+1, epoch_num):
# train
netG.train()
netD.train()
loss_G_l1_train = []
loss_G_adv_train = []
loss_G_tv_train = []
loss_D_real_train = []
loss_D_fake_train = []
loss_D_train = []
loss_G_train = []
# with alive_bar(len(train_dataloader)) as bar:
for i, data_batch in enumerate(tqdm(train_dataloader)):
if self.running_mode == 'development' and i > 2:
print("train dataloader is fine!")
break
input_data = data_batch[0].to(device)
label = data_batch[1].to(device)
# forward netG
output_g = netG(input_data)
# backward netD
fake = torch.cat([input_data, output_g], dim=1)
real = torch.cat([input_data, label], dim=1)
set_requires_grad(netD, True)
optimD.zero_grad()
pred_real = netD(real)
pred_fake = netD(fake.detach())
loss_D_real = loss_adv(pred_real, torch.ones_like(pred_real))
loss_D_fake = loss_adv(pred_fake, torch.zeros_like(pred_fake))
loss_D = 0.5 * (loss_D_real + loss_D_fake)
loss_D.backward()
optimD.step()
# backward netG
fake = torch.cat([input_data, output_g], dim=1)
set_requires_grad(netD, False)
optimG.zero_grad()
pred_fake = netD(fake)
loss_G_adv = loss_adv(pred_fake, torch.ones_like(pred_fake))
loss_G_l1 = loss_l1(output_g, label)
loss_G_tv = loss_tv(output_g)
loss_G = wgt_l1 * loss_G_l1 + wgt_tv * loss_G_tv + wgt_adv * loss_G_adv
loss_G.backward()
optimG.step()
loss_G_l1_train += [loss_G_l1.item()]
loss_G_adv_train += [loss_G_adv.item()]
loss_G_tv_train += [loss_G_tv.item()]
loss_D_fake_train += [loss_D_fake.item()]
loss_D_real_train += [loss_D_real.item()]
loss_D_train += [loss_D.item()]
loss_G_train += [loss_G.item()]
# print(f"TRAIN: EPOCH {epoch}: BATCH {i}: \n GEN: L1 {loss_G_l1} ADV {loss_G_adv} TV {loss_G_tv} DISC: fake {loss_D_fake} real {loss_D_real}")
# bar()
write_train.add_scalar('loss_G_l1', mean(loss_G_l1_train), epoch)
write_train.add_scalar('loss_G_adv', mean(loss_G_adv_train), epoch)
write_train.add_scalar('loss_G_tv', mean(loss_G_tv_train), epoch)
write_train.add_scalar('loss_G', mean(loss_G_train), epoch)
write_train.add_scalar('loss_D_fake', mean(loss_D_fake_train), epoch)
write_train.add_scalar('loss_D_real', mean(loss_D_real_train), epoch)
write_train.add_scalar('loss_D', mean(loss_D_train), epoch)
print(f"TRAIN: EPOCH {epoch}: \n GEN: L1 {mean(loss_G_l1_train)} ADV {mean(loss_G_adv_train)} TV {mean(loss_G_tv_train)} DISC: fake {mean(loss_D_fake_train)} real {mean(loss_D_real_train)}")
with torch.no_grad():
netG.eval()
netD.eval()
loss_G_l1_val = []
loss_G_adv_val = []
loss_G_tv_val = []
loss_D_real_val = []
loss_D_fake_val = []
loss_G_val = []
loss_D_val = []
# with alive_bar(len(val_dataloader)) as bar:
for i, data_batch in enumerate(tqdm(val_dataloader)):
if self.running_mode == 'development' and i > 2:
print("val dataloader is fine!")
break
input_data = data_batch[0].to(device)
label = data_batch[1].to(device)
# forward netG
output_g = netG(input_data)
# forward netD
fake = torch.cat([input_data, output_g], dim=1)
real = torch.cat([input_data, label], dim=1)
pred_real = netD(real)
pred_fake = netD(fake.detach())
loss_D_real = loss_adv(pred_real, torch.ones_like(pred_real))
loss_D_fake = loss_adv(pred_fake, torch.zeros_like(pred_fake))
loss_D = 0.5 * (loss_D_real + loss_D_fake)
loss_G_adv = loss_adv(pred_fake, torch.ones_like(pred_fake))
loss_G_l1 = loss_l1(output_g, label)
loss_G_tv = loss_tv(output_g)
loss_G = wgt_l1 * loss_G_l1 + wgt_tv * loss_G_tv + wgt_adv * loss_G_adv
loss_G_l1_val += [loss_G_l1.item()]
loss_G_adv_val += [loss_G_adv.item()]
loss_G_tv_val += [loss_G_tv.item()]
loss_D_real_val += [loss_D_fake.item()]
loss_D_fake_val += [loss_D_real.item()]
loss_D_val += [loss_D.item()]
loss_G_val += [loss_G.item()]
if i == disp_batch:
write_val.add_images('input images', rearrange(input_data, "b (c t) h w -> (b c) t h w", t=1))
write_val.add_images('label images', rearrange(label, "b (c t) h w -> (b c) t h w", t=1))
# bar()
write_val.add_scalar('loss_G_l1', mean(loss_G_l1_val), epoch)
write_val.add_scalar('loss_G_adv', mean(loss_G_adv_val), epoch)
write_val.add_scalar('loss_G_tv', mean(loss_G_tv_val), epoch)
write_val.add_scalar('loss_G', mean(loss_G_val), epoch)
write_val.add_scalar('loss_D_fake', mean(loss_D_fake_val), epoch)
write_val.add_scalar('loss_D_real', mean(loss_D_real_val), epoch)
write_val.add_scalar('loss_D', mean(loss_D_val), epoch)
print(f"VAL: EPOCH {epoch}: \n GEN: L1 {mean(loss_G_l1_val)} ADV {mean(loss_G_adv_val)} TV {mean(loss_G_tv_val)} DISC: fake {mean(loss_D_fake_val)} real {mean(loss_D_real_val)}")
if (epoch % save_ckpt_freq) == 0 or running_mode == "development":
self.save(netG, netD, optimG, optimD, epoch)
write_train.close()
write_val.close()
def predict(self):
running_mode = self.running_mode
wgt_l1 = self.wgt_l1
wgt_adv = self.wgt_adv
wgt_tv =self.wgt_tv
batch_size = self.batch_size
gpu_ids = self.gpu_ids
device = self.device
q_mask_path = self.args.q_mask_path
q_mask = np.load(q_mask_path)
predict_save_dir = self.args.predict_save_dir
label_save_path = "./result/label"
if not os.path.exists(predict_save_dir):
os.makedirs(predict_save_dir)
netG = Generator()
netD = Discriminator(nch_in=64, nch_ker=64)
netG, start_epoch = self.load(self.model_save_path, netG, [netD], epoch=365, mode="test")
dataset = HCPDataset(self.args, mode="test");
dataloader = DataLoader(dataset, batch_size)
predict_result = np.empty_like(dataset.data)
if not os.path.exists(label_save_path):
h, w, s, d = predict_result.shape
label_data = np.empty((h, w, s, int(d/2)))
with torch.no_grad():
for i, data_batch in enumerate(tqdm(dataloader)):
if self.running_mode == 'development' and i > 2:
print("test dataloader is fine!")
break
input_data = data_batch[0]
if not os.path.exists(label_save_path):
label = data_batch[1]
label = rearrange(label, "b c h w -> h w (b c)")
label_data[:, :, i, :] = label.numpy()
output_g = netG(input_data)
output_g = rearrange(output_g, "b c h w -> h w (b c)")
input_data = rearrange(input_data, "b c h w -> h w (b c)")
h, w, d = output_g.shape
d = d * 2
cur_slice = np.empty((h, w, d))
cur_slice[:, :, q_mask] = input_data.numpy()
cur_slice[:, :, q_mask+1] = output_g.numpy()
predict_result[:, :, i, :] = cur_slice
np.save(f"{predict_save_dir}/predict_{365}.npy", predict_result)
if not os.path.exists(label_save_path):
np.save(f"{label_save_path}", label_data)
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad