forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_fuser.cpp
1285 lines (1179 loc) · 48.5 KB
/
graph_fuser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <queue>
#include <unordered_map>
#include <utility>
namespace torch::jit {
namespace {
// What is a simple mappable operator? It:
// - Has a single tensor output
// - Output and all tensor inputs have the same shape
// - Output and all tensor inputs have the same scalar type
// or all tensor inputs have the same scalar type and
// output is identified in PropagateInputShapes
// - Output and all tensor inputs should be on the same device
// - Produces dense non-overlapping outputs
// Some of these restrictions may be relaxable, but you should
// carefully read the code first, as we rely on these assumptions.
bool isSimpleMap(Node* node) {
static OperatorSet simple_mappable{{
"aten::_cast_Float(Tensor self, bool non_blocking) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::atan2(Tensor self, Tensor other) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::erf(Tensor self) -> Tensor",
"aten::erfc(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Tensor other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::lgamma(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::logit(Tensor self, float? eps=None) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Scalar weight) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Tensor weight) -> Tensor",
"aten::max(Tensor self, Tensor other) -> Tensor",
"aten::min(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::pow(Tensor self, Tensor exponent) -> Tensor",
"aten::pow(Tensor self, Scalar exponent) -> Tensor",
"aten::pow(Scalar self, Tensor exponent) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
"aten::remainder(Tensor self, Tensor other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::sqrt(Tensor self) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Scalar other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Scalar other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Scalar other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Scalar other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Scalar other) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::lt(Tensor self, Scalar other) -> Tensor",
"aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor",
"aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
}};
if (!node->isMemberOf(simple_mappable)) {
return false;
}
for (Value* input : node->inputs()) {
if (input->type()->isSubtypeOf(*TensorType::get()) ||
input->type()->isSubtypeOf(*FloatType::get())) {
continue;
}
if (input->node()->kind() != prim::Constant) {
return false;
}
}
return true;
}
struct GraphFuser {
using FusionCallback = std::function<bool(GraphFuser*, Node*)>;
Block* block_;
AliasDb* aliasDb_;
std::shared_ptr<Graph> graph_;
FusionCallback callback_ = [](GraphFuser* gf, Node* n) {
return gf->isFusableDefault(n, gf->strict_fuser_check_);
};
Symbol kind_ = prim::FusionGroup;
bool strict_fuser_check_ = false;
// nvrtc has a limit on the number of arguments allowed in a CUDA kernel.
// The specific limit is a function of constant memory size, amount available
// to pass arguments, and some implementation dependence. Select a safe
// limit here.
// This limit is also applied to other devices in the fuser by default.
// Change with setInputArgLimit
size_t subgraph_arg_limit_ = 128;
GraphFuser(AliasDb* aliasDb, Block* block, bool strict_fuser_check)
: block_(block),
aliasDb_(aliasDb),
strict_fuser_check_(strict_fuser_check) {}
// Custom passes require kind to specified
GraphFuser(
AliasDb* aliasDb,
Block* block,
FusionCallback callback,
Symbol kind,
bool strict_fuser_check = false)
: block_(block),
aliasDb_(aliasDb),
callback_(std::move(callback)),
kind_(kind),
strict_fuser_check_(strict_fuser_check) {}
void setInputArgLimit(size_t limit) {
subgraph_arg_limit_ = limit;
}
value_list tensorInputs(Node* node) {
return filter(node->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
}
bool isFusable(Node* node) {
return callback_(this, node);
}
bool isFusableDevice(Value* v, bool strict_fuser_check) {
if (!v->type()->isSubtypeOf(*TensorType::get())) {
return true;
}
auto device = v->type()->expectRef<TensorType>().device();
if (!device) {
return !strict_fuser_check;
}
if ((*device).is_cpu()) {
return canFuseOnCPULegacy();
} else if ((*device).is_cuda()) {
return canFuseOnGPU();
} else if ((*device).is_xpu()) {
return false;
} else {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Unknown device for graph fuser");
}
}
// Default fusability check - used when the user doesn't pass in
// a callback.
bool isFusableDefault(Node* node, bool strict_fuser_check) {
bool fusableDevice = true;
for (const auto& output : node->outputs()) {
if (!output->uses().empty()) {
fusableDevice &= isFusableDevice(output, strict_fuser_check);
}
}
return fusableDevice && isFusableMap(node);
}
bool isFusableMap(Node* node) {
// We don't want to bother with cross-block node movements, as they
// are not necessarily correct.
if (node->owningBlock() != block_)
return false;
return node->kind() == prim::FusionGroup || isSimpleMap(node);
}
bool isFusableCatNode(Node* node) {
if (node->kind() != aten::cat)
return false;
if (!node->is_constant(attr::dim))
return false;
auto tensors_node = node->namedInput(attr::tensors)->node();
if ((tensors_node->inputs().size() + node->outputs().size()) >
subgraph_arg_limit_) {
return false;
}
if (tensors_node->kind() != prim::ListConstruct)
return false;
// NB: Note that technically other uses of the list aren't a big problem for
// us. It would be enough to place the prim::FusedConcat before the
// prim::ListConstruct, and allUsersAreThisConsumerOrOccurAfterIt would
// still be satisfied. However, I don't expect this to be necessary any time
// soon, and so we're simply assuming that we don't have to deal with it.
if (tensors_node->output()->uses().size() > 1)
return false;
return true;
}
bool calculatesSize(Node* node) {
return node->matches("aten::size(Tensor self) -> int[]");
}
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
auto defining_node = producer->node();
for (auto o : defining_node->outputs()) {
for (auto u : o->uses()) {
if (u.user != consumer && !calculatesSize(u.user))
return false;
}
}
return true;
}
Graph& getSubgraph(Node* n) {
AT_ASSERT(n->kind() == kind_);
return *n->g(attr::Subgraph);
}
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
// Now we have two fusion groups!
// Revert the fusion - place all inner nodes of producer back in the outer
// graph.
std::vector<Node*> temporary_nodes;
auto producer_subgraph = &getSubgraph(producer_group);
// Initialize a map of inner graph values to outer graph values
std::unordered_map<Value*, Value*> inner_to_outer;
auto inner_inputs = producer_subgraph->inputs();
auto outer_inputs = producer_group->inputs();
for (const auto i : c10::irange(inner_inputs.size())) {
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
}
// Clone all nodes
for (auto inner : producer_subgraph->nodes()) {
Node* outer = block_->owningGraph()->createClone(
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
outer->insertBefore(producer_group);
temporary_nodes.emplace_back(outer);
auto inner_outputs = inner->outputs();
auto outer_outputs = outer->outputs();
for (const auto i : c10::irange(inner_outputs.size())) {
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
}
}
// Replace uses of producer_group outputs and destroy the producer
auto subgraph_outputs = producer_subgraph->outputs();
for (const auto i : c10::irange(subgraph_outputs.size())) {
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
// new producer outputs have same aliasing properties as outer_output
aliasDb_->replaceWithNewValue(producer_group->outputs()[i], outer_output);
}
producer_group->destroy();
producer_group =
nullptr; // Just to get a clear error in case someone uses it
// Inline the temporary nodes into the first group
auto consumer_subgraph = &getSubgraph(consumer_group);
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
++it) {
Node* node = *it;
Node* merged = mergeNodeIntoGroup(consumer_group, node);
// If any of the outputs are still used then we need to add them
auto outputs = node->outputs();
for (const auto i : c10::irange(outputs.size())) {
auto output = outputs[i];
if (output->uses().empty())
continue;
consumer_subgraph->registerOutput(merged->outputs()[i]);
auto new_output = consumer_group->addOutput();
output->replaceAllUsesWith(new_output);
aliasDb_->replaceWithNewValue(output, new_output);
new_output->setType(output->type());
}
node->destroy();
}
}
// insert a producer node into a consuming fusion group.
// DOES NOT WORK if n is a consumer of an output of the fusion group
// returns the node _inside_ the group that represents the node
Node* mergeNodeIntoGroup(Node* group, Node* n) {
AT_ASSERT(n->kind() != kind_);
auto& subgraph = getSubgraph(group);
// map from nodes in the surrounding graph to parameters in the fusion
// group's subgraph that correspond to them
std::unordered_map<Value*, Value*> inputs_map;
size_t i = 0;
size_t tensor_insert_idx = 0;
AT_ASSERT(group->inputs().size() == subgraph.inputs().size());
for (auto input : group->inputs()) {
inputs_map[input] = subgraph.inputs()[i++];
if (input->type()->isSubtypeOf(*TensorType::get()))
tensor_insert_idx = i;
}
// add n's inputs to the fusion group's input list if we don't already have
// them
// we insert tensors first because the fuser assumes that to be the case
// (as a legacy from tensors only)
WithInsertPoint guard(*subgraph.nodes().begin());
for (auto input : n->inputs()) {
if (inputs_map.count(input) == 0) {
if (input->type()->isSubtypeOf(*TensorType::get())) {
auto in_group = subgraph.insertInput(tensor_insert_idx);
in_group->setType(input->type());
inputs_map[input] = in_group;
group->insertInput(tensor_insert_idx, input);
tensor_insert_idx++;
} else if (
(input->type()->isSubtypeOf(*FloatType::get()) &&
input->node()->kind() != prim::Constant) ||
(n->kind() == aten::_grad_sum_to_size &&
input->type()->isSubtypeOf(*ListType::ofInts()))) {
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
} else {
// We don't support passing in scalars as arguments to fused kernels,
// so we generally don't allow fusing tensor-scalar operations unless
// the scalar is constant. In those cases we inline the constants
// directly in the body of the fused group.
AT_ASSERT(input->node()->kind() == prim::Constant);
Node* in_const =
subgraph.createClone(input->node(), [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
});
subgraph.insertNode(in_const);
inputs_map[input] = in_const->output();
}
}
}
// copy n into the graph, remapping its inputs to internal nodes
Node* in_graph = subgraph.createClone(
n, [&](Value* k) -> Value* { return inputs_map[k]; });
// if n's outputs are already inputs to the fusion group,
// we need to remove them because n is now inside the fusion group.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
//
// remapping nodes that used the input to the newly-merged node
// n is not an input when the fusion group is empty
auto inputs = group->inputs();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
group->removeInput(p);
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
subgraph.eraseInput(p);
}
}
return subgraph.insertNode(in_graph);
}
// turn consumer node n into a fusion group with just n inside
// to prepare for fusion and replace uses of n with the new group
Node* createSingletonFusionGroup(Node* n) {
auto group = block_->owningGraph()->createWithSubgraph(kind_);
// propagate position information for the new node so we can always
// have a valid mapping
group->insertBefore(n);
Node* mergedNode = mergeNodeIntoGroup(group, n);
getSubgraph(group).registerOutput(mergedNode->output());
auto sel = group->addOutput();
sel->copyMetadata(n->output());
aliasDb_->replaceWithNewValue(n->output(), sel);
n->replaceAllUsesWith(group);
n->destroy();
return group;
}
std::optional<Node*> tryFuse(Node* consumer, Value* producer) {
// this handles cases where producer can be moved _into_ the fusion group of
// consumer.
// TODO: extend to fusion of consumer into _producer's_ fusion blob
// if the consumer allInputsAreThisProducer(consumer,producer)
// we can move the consumer up into the producer.
// but this requires better handling of merging fusion groups so it is not
// done now
bool shouldFuse = isFusable(producer->node()) &&
// Rearrange nodes such that all uses of producer are after the
// consumer. Fusion will rewrite those later uses to use the version of
// producer generated by the fused blob. In this case, producer becomes
// an output of the fusion group.
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
if (!shouldFuse) {
return std::nullopt;
}
if ((consumer->inputs().size() + consumer->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > subgraph_arg_limit_) {
return std::nullopt;
}
auto group = consumer;
if (consumer->kind() != kind_) {
group = createSingletonFusionGroup(consumer);
}
if (producer->node()->kind() == kind_) {
mergeFusionGroups(group, producer->node());
return group;
}
AT_ASSERT(producer->node()->outputs().size() == 1);
Node* merged = mergeNodeIntoGroup(group, producer->node());
// remaining uses of this producer can occur because we allow
// fusion in cases where uses remain after the consumer
// if these exist, re-route them to the version of producer
// created in FusionGroup
if (!producer->uses().empty()) {
getSubgraph(group).registerOutput(merged->output());
Value* new_producer = group->addOutput();
new_producer->copyMetadata(producer);
aliasDb_->replaceWithNewValue(producer, new_producer);
producer->replaceAllUsesWith(new_producer);
}
producer->node()->destroy();
return group;
}
bool canFuseChunk(Node* consumer, Value* producer) {
if (consumer->kind() != prim::FusionGroup) {
return false;
}
// Does the chunk have constant chunks/dim?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk)
return false;
// And all uses of the chunk are in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer) {
return false;
}
}
}
// And isn't a no-op chunk (chunks == 1). Have CSE clean this up.
// We could fuse this but it's better to just delete the node.
if (chunk->i(attr::chunks) == 1) {
return false;
}
return true;
}
std::optional<Node*> findFusedChunk(Node* group, Value* input) {
AT_ASSERT(group->kind() == prim::FusionGroup);
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
if (it == group->inputs().end()) {
return std::nullopt;
}
size_t input_index = it - group->inputs().begin();
auto& subgraph = getSubgraph(group);
auto* subgraph_input = subgraph.inputs().at(input_index);
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
auto* node = subgraph_input->uses().at(0).user;
if (node->kind() == prim::ConstantChunk) {
AT_ASSERT(subgraph_input->uses().size() == 1);
return node;
}
return std::nullopt;
}
void fuseChunkByReusingExistingFusedChunk(
Node* group,
Node* chunk,
Node* existingFusedChunk) {
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
return;
}
auto& subgraph = getSubgraph(group);
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
// Find the input to the FusionGroup (group)
auto* replacement_val = existingFusedChunk->outputs().at(i);
auto* val = chunk->outputs().at(i);
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
auto input_index = it - group->inputs().begin();
// Rewrite the graph to use replacement_val
auto group_input = subgraph.inputs().at(input_index);
group_input->replaceAllUsesWith(replacement_val);
// Remove the input, it's no longer needed
group->removeInput(input_index);
subgraph.eraseInput(input_index);
}
chunk->destroy();
}
// There are two invariants for prim::ConstantChunk:
// (1) the tensor input to prim::ConstantChunk must be an input to the fusion
// group (2) no two ConstantChunks in the same FusionGroup can share a tensor
// input.
graph_node_list::iterator fuseChunk(Node* consumer, Value* producer) {
auto* chunk = producer->node();
AT_ASSERT(consumer->kind() == prim::FusionGroup);
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
// if producer's input is already an input to a prim::ConstantChunk node,
// we cannot add a new prim::ConstantChunk node because of invariant (2).
auto* chunked_tensor = producer->node()->input();
if (auto existingFusedChunk = findFusedChunk(consumer, chunked_tensor)) {
fuseChunkByReusingExistingFusedChunk(
consumer, chunk, *existingFusedChunk);
return consumer->reverseIterator();
}
// Move prim::ConstantChunk into the FusionGroup
mergeNodeIntoGroup(consumer, chunk);
chunk->destroy();
return consumer->reverseIterator();
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
graph_node_list::iterator scanNodeForChunks(Node* consumer) {
if (consumer->kind() == prim::FusionGroup) {
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (!canFuseChunk(consumer, producer)) {
continue;
}
return fuseChunk(consumer, producer);
}
}
return ++consumer->reverseIterator();
}
at::ArrayRef<Value*> broadcast_tensors(value_list inputs) {
AT_ASSERT(!inputs.empty());
auto* g = inputs[0]->owningGraph();
auto* input_list =
g->insertNode(g->createList(TensorType::get(), inputs))->output();
aliasDb_->createValue(input_list);
auto* output_list = g->insert(aten::broadcast_tensors, {input_list});
aliasDb_->createValue(output_list);
auto* unpack_node = g->insertNode(
g->create(prim::ListUnpack, {output_list}, inputs.size()));
// We are doing:
// input_list = listConstruct(a, b, ...)
// output_list = broadcast_tensors(input_list)
// a_broadcasted, b_broadcasted = listUnpack(output_list)
// `a_broadcasted` should receive the same aliasing info as `a`
TORCH_INTERNAL_ASSERT(unpack_node->outputs().size() == inputs.size());
for (const auto i : c10::irange(inputs.size())) {
Value* original_input = inputs[i];
Value* broadcasted_output = unpack_node->outputs()[i];
aliasDb_->copyValue(original_input, broadcasted_output);
}
return unpack_node->outputs();
}
void insertExplicitBroadcast(Node* node) {
WithInsertPoint insert_guard{node};
auto tensors = tensorInputs(node);
auto new_tensors = broadcast_tensors(std::move(tensors));
// Replace tensors inputs with broadcasted values
auto new_tensors_it = new_tensors.begin();
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (node->inputs()[i]->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(new_tensors_it != new_tensors.end());
node->replaceInput(i, *(new_tensors_it++));
}
}
}
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
size_t nchunks = chunk->i(attr::chunks);
Node* bchunk =
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
bchunk->addInput(chunk->input());
for (const auto i : c10::irange(nchunks)) {
auto* old_output = chunk->outputs().at(i);
auto* new_output = bchunk->outputs().at(i);
new_output->copyMetadata(old_output);
aliasDb_->replaceWithNewValue(old_output, new_output);
old_output->replaceAllUsesWith(new_output);
}
bchunk->copyAttributes(*chunk);
bchunk->insertAfter(chunk);
chunk->destroy();
return bchunk;
}
// in places where op can be fused into a consumer but chunk is in the way
// distribute chunk to op's operands:
// replace a,b = chunk(op(x,y,z)) with:
// x', y', z' = broadcast_tensors([x, y, z])
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
// b = op(x1,y1,x1)
//
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
// all of its inputs and then chunks each input, in order, the same way.
// The above graph is equivalent to:
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
// a = op(x0,y0,z0)
// b = op(x1,y1,x1)
//
// NB: The explicit broadcast is important for correctness.
// Let's say we have:
// %z = aten::mul(%x, %y)
// %z.1, %z.2 = aten::chunk(%z, ...)
// ... = prim::FusionGroup(%z.1, %z.2, ...)
// It's possible that %x and %y do not have the same size as %z and
// need to be expanded first so that they can be chunked like %z
//
// NB: Chunk motion only occurs with fusable consumers, which implies
// that there is always some other operation, e.g., a+b, that happens
// after the chunk, and will be put into the fusion group. This is
// important, because distributing the chunk changes the contiguity
// of a and b, and so the results would be invalid, except that we know
// that simple_mappable operations will restore contiguity before
// we exit the fusion group.
//
// NB: The intermediate BroadcastingChunk is important for moving chunks past
// more than one operation: the graph fuser is not able to easily move
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusible
// ops
// x = f(v, w)
// z = g(x, y)
// a, b = chunk(z)
// c = h(a, b)
// becomes (with the broadcast_tensors + chunk approach):
// x = f(v, w)
// x', y' = broadcast_tensors([x, y])
// ax, bx = chunk(x')
// ay, by = chunk(y')
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// The broadcast_tensors node makes it harder to move f into the resulting
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
// together results in:
// x = f(v, w)
// ax, bx, ay, by = BroadcastingChunk(x, y)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// making it easier to move f after the BroadcastingChunk:
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
// ax = f(av, aw)
// by = f(bv, bw)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
bool tryToMoveChunk(Node* consumer, Value* producer) {
// is the output from a chunk/bchunk node?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk &&
chunk->kind() != prim::BroadcastingChunk)
return false;
// try to find a producer to move after the chunk/bchunk. The producer must
// be fusible into the consumer.
auto it = std::find_if(
chunk->inputs().begin(),
chunk->inputs().end(),
[&](Value* producer_for_chunk) {
return isFusableMap(producer_for_chunk->node()) &&
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
});
if (it == chunk->inputs().end()) {
return false;
}
Value* producer_for_chunk = *it;
size_t producer_index = it - chunk->inputs().begin();
// all uses of the chunk must be in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer)
return false;
}
}
// multiple return operators
Node* producer_for_chunk_node = producer_for_chunk->node();
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
// broadcast and one or more chunk operations.
auto* bchunk = chunk;
if (chunk->kind() == prim::ConstantChunk) {
bchunk = promoteChunkToBroadcastingChunk(chunk);
}
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
std::vector<Value*> producer_chunk_outputs;
for (const auto i : c10::irange(nchunks)) {
producer_chunk_outputs.push_back(
bchunk->output(nchunks * producer_index + i));
}
// Add each of op's operands to the bchunk node.
// chunked_inputs[input_nr][chunk_output_idx]
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
std::vector<std::vector<Value*>> chunked_inputs;
for (auto input : producer_for_chunk_node->inputs()) {
// XXX: we only work with pointwise ops in here, so we know it is valid to
// push the concat only through tensor arguments (and all other args can
// be safely ignored).
if (!input->type()->isSubtypeOf(*TensorType::get()))
continue;
// if 'input' is already an input to the bchunk, reuse it.
auto bchunk_inputs = bchunk->inputs();
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
if (it != bchunk_inputs.end()) {
chunked_inputs.emplace_back();
auto input_index = std::distance(bchunk_inputs.begin(), it);
for (const auto chunki : c10::irange(nchunks)) {
chunked_inputs.back().push_back(
bchunk->outputs().at(nchunks * input_index + chunki));
}
continue;
}
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
// copy selects one day, it is definitely not what you want here (selects
// have different types).
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
// to copy select nodes now that we have refactored to have a Value
// distinct from Node.
bchunk->addInput(input);
chunked_inputs.emplace_back(); // alas, to not be C++17
for (auto chunk_sel : producer_chunk_outputs) {
Value* input_chunk_sel = bchunk->addOutput();
input_chunk_sel->setType(chunk_sel->type());
// Add a fresh value for each output element of the broadcasting chunk
// node. This is safe because it will be consumed only by the chunked
// ops.
aliasDb_->createValue(input_chunk_sel);
chunked_inputs.back().push_back(input_chunk_sel);
}
}
// apply the op to each chunk of the chunked operands,
// and then rewrite the graph to use them!
for (auto chunk_sel : producer_chunk_outputs) {
auto original_inputs = producer_for_chunk_node->inputs();
Node* chunked_op =
block_->owningGraph()->create(producer_for_chunk_node->kind());
chunked_op->copyAttributes(*producer_for_chunk_node);
chunked_op->output()->setType(chunk_sel->type());
auto chunked_inputs_it = chunked_inputs.begin();
for (Value* original_input : original_inputs) {
if (original_input->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
chunked_op->addInput(
// NOLINTNEXTLINE(clang-analyzer-core.DivideZero)
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
++chunked_inputs_it;
} else {
chunked_op->addInput(original_input);
}
}
bchunk->owningGraph()->insertNode(chunked_op);
chunk_sel->replaceAllUsesWith(chunked_op->output());
aliasDb_->replaceWithNewValue(chunk_sel, chunked_op->output());
}
bchunk->removeInput(producer_index);
for (const auto i : c10::irange(nchunks)) {
(void)i; // Suppress unused variable warning
bchunk->eraseOutput(nchunks * producer_index);
}
// The output of producer_for_chunk_node could have been used in some
// aten::size operators, so we need to clean those up as well (we simply
// broadcast all its tensor inputs).
// We need to insert these early in the graph, i.e. immediately after
// the producer_for_chunk_node as we will have the _size_if_not_same
// that may be before the bchunk.
WithInsertPoint guard2(producer_for_chunk_node);
auto size_calc_uses = producer_for_chunk_node->output()->uses();
if (!size_calc_uses.empty()) {
auto tensor_inputs = filter(
producer_for_chunk_node->inputs(),
[](Value* v) { return v->type()->isSubtypeOf(*TensorType::get()); });
auto tensor_sizes = fmap(tensor_inputs, [&](Value* v) {
Value* output = v->owningGraph()->insert(aten::size, {v});
aliasDb_->createValue(output);
return output;
});
AT_ASSERT(!tensor_sizes.empty());
Value* output_size = tensor_sizes.size() == 1
? tensor_sizes[0]
: broadcastSizes(tensor_sizes, aliasDb_);
for (Use u : size_calc_uses) {
u.user->output()->replaceAllUsesWith(output_size);
u.user->destroy();
}
}
producer_for_chunk_node->destroy();
return true;
}
// returns where to continue scanning, and whether any fusion was made
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (isFusable(consumer)) {
// handle inputs in reverse topological order as well...
// otherwise in f(a,a+b) it will appear a is used twice if we consider
// the f-a fusion before the f-(a+b) fusion first.
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (tryToMoveChunk(consumer, producer)) {
// the chunk before this consumer was re-arranged to allow fusion,
// we scan this consumer again to perform the fusion
return std::make_pair(consumer->reverseIterator(), true);
}
auto fusion_group = tryFuse(consumer, producer);
if (fusion_group) {
// after fusion, consumer moves into a FusionGroup, so inputs is no
// longer valid so we rescan the new FusionGroup for more fusions...
return std::make_pair(fusion_group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
void replaceIntermediateBroadcastingChunks() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
auto* node = *it;
++it; // We might delete node, so increment the iterator now.
if (node->kind() != prim::BroadcastingChunk) {
continue;
}
auto* bchunk = node;
insertExplicitBroadcast(bchunk);
auto* graph = block_->owningGraph();
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
input_offset++) {
auto* input = bchunk->inputs().at(input_offset);
Node* new_chunk =
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
new_chunk->copyAttributes(*bchunk);
for (const auto output_offset : c10::irange(nchunks)) {
auto new_output = new_chunk->addOutput();
auto old_output =
bchunk->outputs().at(input_offset * nchunks + output_offset);
new_output->copyMetadata(old_output);
aliasDb_->replaceWithNewValue(old_output, new_output);
old_output->replaceAllUsesWith(new_output);
}
}
bchunk->destroy();
}
}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (const auto i : c10::irange(inputs.size())) {
if (inputs[i]->type()->isSubtypeOf(*TensorType::get())) {
Value* soutput = graph->insert(aten::size, {inputs[i]});
aliasDb_->createValue(soutput);
shape_of[sinputs[i]] = soutput;
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (const auto i : c10::irange(outputs.size())) {
if (usedOnlyInSize(outputs[i]))
continue;
Value* soutput = graph->insert(aten::size, {outputs[i]});
aliasDb_->createValue(soutput);
shape_of[soutputs[i]] = soutput;
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == prim::FusedConcat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
for (Value* output : sizes_node->outputs()) {
aliasDb_->createValue(output);
}
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
auto shapes =
fmap(tensor_inputs, [&](Value* v) { return shape_of.at(v); });
AT_ASSERT(!shapes.empty());
shape_of.emplace(