forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlas.cpp
1202 lines (1105 loc) · 46.1 KB
/
Blas.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cstdint>
#include <c10/util/Exception.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/OpMathType.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <ATen/cuda/tunable/TunableGemm.h>
#include <ATen/native/Resize.h>
#include <c10/util/MaybeOwned.h>
#include <ATen/native/cuda/RowwiseScaledMM.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_addmm_activation_native.h>
#include <ATen/ops/_efficientzerotensor.h>
#include <ATen/ops/_scaled_mm_native.h>
#include <ATen/ops/_unsafe_view_native.h>
#include <ATen/ops/abs.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/addmv_native.h>
#include <ATen/ops/baddbmm_native.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/copy_native.h>
#include <ATen/ops/dot_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/gelu.h>
#include <ATen/ops/max.h>
#include <ATen/ops/mm_native.h>
#include <ATen/ops/mul.h>
#include <ATen/ops/relu.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/scalar_tensor_native.h>
#include <ATen/ops/vdot_native.h>
#endif
namespace at::native {
namespace {
// TODO: https://github.com/pytorch/pytorch/pull/59380#pullrequestreview-725310492
c10::MaybeOwned<Tensor> inline resolve_conj_if_indicated(const Tensor& tensor, bool resolve_conj) {
if (resolve_conj && tensor.is_conj()) {
return c10::MaybeOwned<Tensor>::owned(tensor.resolve_conj());
} else {
return c10::MaybeOwned<Tensor>::borrowed(tensor);
}
}
c10::MaybeOwned<Tensor> inline prepare_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, bool transpose_result) {
if (tensor.is_non_overlapping_and_dense()) { // common case
transpose_tensor = tensor.is_contiguous();
return resolve_conj_if_indicated(tensor, transpose_result ? transpose_tensor : !transpose_tensor);
}
IntArrayRef tensor_strides = tensor.strides();
IntArrayRef tensor_sizes = tensor.sizes();
if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) {
transpose_tensor = false;
return resolve_conj_if_indicated(tensor, !transpose_result);
} else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) {
transpose_tensor = true;
return resolve_conj_if_indicated(tensor, transpose_result);
} else {
transpose_tensor = true;
return c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
}
c10::MaybeOwned<Tensor> inline prepare_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor) {
if (tensor.is_non_overlapping_and_dense()) { // common case
transpose_tensor = tensor.is_contiguous();
return resolve_conj_if_indicated(tensor, true);
}
IntArrayRef tensor_strides = tensor.strides();
IntArrayRef tensor_sizes = tensor.sizes();
if ((tensor_strides[0] == 1) && (tensor_strides[1] >= std::max<int64_t>(1, tensor_sizes[0]))) {
transpose_tensor = false;
return resolve_conj_if_indicated(tensor, true);
} else if ((tensor_strides[1] == 1) && (tensor_strides[0] >= std::max<int64_t>(1, tensor_sizes[1]))) {
transpose_tensor = true;
return resolve_conj_if_indicated(tensor, true);
} else {
transpose_tensor = true;
return c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
}
struct cublasCommonArgs {
cublasCommonArgs(const Tensor& mat1, const Tensor& mat2, Tensor& c) {
bool transpose_result, transpose_mat1, transpose_mat2;
result = prepare_matrix_for_cublas(c, transpose_result);
mata = prepare_matrix_for_cublas(transpose_result ? mat2 : mat1, transpose_mat1, transpose_result);
matb = prepare_matrix_for_cublas(transpose_result ? mat1 : mat2, transpose_mat2, transpose_result);
auto mat1_sizes = mat1.sizes();
auto mat2_sizes = mat2.sizes();
if (transpose_result) {
transpose_mat1 = !transpose_mat1;
transpose_mat2 = !transpose_mat2;
mat1_sizes = mata->sizes();
mat2_sizes = matb->sizes();
}
m = mat1_sizes[transpose_result ? 1 : 0];
k = mat1_sizes[transpose_result ? 0 : 1];
n = mat2_sizes[transpose_result ? 0 : 1];
lda = mata->stride((transpose_mat1 == transpose_result) ? 1 : 0);
ldb = matb->stride((transpose_mat2 == transpose_result) ? 1 : 0);
result_ld = result->stride(transpose_result ? 0 : 1);
transa = transpose_mat1 ? mata->is_conj() ? 'c' : 't' : 'n';
transb = transpose_mat2 ? matb->is_conj() ? 'c' : 't' : 'n';
}
char transa, transb;
int64_t m, n, k;
int64_t lda, ldb, result_ld;
c10::MaybeOwned<Tensor> mata, matb, result;
};
} // namespace
c10::MaybeOwned<Tensor> prepare_batch_matrix_for_cublas(const Tensor& tensor, bool& transpose_tensor, int64_t& ld_tensor, bool transpose_result, int64_t m, int64_t n) {
IntArrayRef tensor_strides = tensor.strides();
c10::MaybeOwned<Tensor> tensor_;
int fast_dim = transpose_result ? 2 : 1;
int leading_dim = transpose_result ? 1 : 2;
if (tensor_strides[fast_dim] == 1 &&
(tensor_strides[leading_dim] >= std::max<int64_t>(1, m))) {
transpose_tensor = false;
tensor_ = resolve_conj_if_indicated(tensor, true);
ld_tensor = tensor_->strides()[leading_dim];
} else if ((tensor_strides[leading_dim] == 1) &&
(tensor_strides[fast_dim] >= std::max<int64_t>(1, n))) {
transpose_tensor = true;
tensor_ = resolve_conj_if_indicated(tensor, false);
ld_tensor = tensor_->strides()[fast_dim];
} else {
transpose_tensor = !transpose_result;
// gemm call requires leading dimension and stride parameters to be non-zero
bool is_stride_non_zero = tensor.strides()[1] != 0 && tensor.strides()[2] != 0;
if (tensor.is_contiguous() && is_stride_non_zero) {
tensor_ = resolve_conj_if_indicated(tensor, transpose_result);
} else {
tensor_ = c10::MaybeOwned<Tensor>::owned(tensor.clone(at::MemoryFormat::Contiguous));
}
ld_tensor = tensor_->strides()[1];
}
return tensor_;
}
namespace {
enum class Activation {
None,
RELU,
GELU,
};
cuda::blas::GEMMAndBiasActivationEpilogue activation_to_gemm_and_blas_arg(Activation a) {
switch (a) {
case Activation::None:
return cuda::blas::GEMMAndBiasActivationEpilogue::None;
case Activation::RELU:
return cuda::blas::GEMMAndBiasActivationEpilogue::RELU;
case Activation::GELU:
return cuda::blas::GEMMAndBiasActivationEpilogue::GELU;
default:
TORCH_CHECK(false);
return cuda::blas::GEMMAndBiasActivationEpilogue::None;
}
}
static bool getDisableAddmmCudaLt() {
static const char* env_value = std::getenv("DISABLE_ADDMM_CUDA_LT");
#ifdef USE_ROCM
// allow both CUDA and HIP env var names for ROCm builds
// also, current default for ROCm builds is disable by default
if (env_value == nullptr) {
env_value = std::getenv("DISABLE_ADDMM_HIP_LT");
}
if (env_value != nullptr && strcmp(env_value, "0") == 0) {
return false;
}
return true;
#else
if (env_value != nullptr && strcmp(env_value, "1") == 0) {
return true;
}
return false;
#endif
}
#ifdef USE_ROCM
static bool isSupportedHipLtROCmArch(int index) {
hipDeviceProp_t* prop = at::cuda::getDeviceProperties(index);
std::string device_arch = prop->gcnArchName;
static const std::vector<std::string> archs = {"gfx90a", "gfx940", "gfx941", "gfx942"};
for (std::string arch : archs) {
size_t substring = device_arch.find(arch);
if (substring != std::string::npos) {
return true;
}
}
TORCH_CHECK(false, "Attempting to use hipBLASLt on a unsupported architecture!");
return false;
}
#endif
template <typename scalar_t>
static void launchTunableGemmAndBias(cublasCommonArgs &args, const Scalar& alpha, const scalar_t* bias, cuda::blas::GEMMAndBiasActivationEpilogue activation) {
bool transa_ = ((args.transa != 'n') && (args.transa != 'N'));
bool transb_ = ((args.transb != 'n') && (args.transb != 'N'));
at::cuda::tunable::GemmAndBiasParams<scalar_t> params;
params.transa = args.transa;
params.transb = args.transb;
params.m = args.m;
params.n = args.n;
params.k = args.k;
params.alpha = alpha.to<at::opmath_type<scalar_t>>();
params.a = args.mata->const_data_ptr<scalar_t>();
params.lda = args.lda;
params.b = args.matb->const_data_ptr<scalar_t>();
params.ldb = args.ldb;
params.c = args.result->data_ptr<scalar_t>();
params.ldc = args.result_ld;
params.bias = bias;
params.activation = activation;
if (transa_ && transb_) {
static at::cuda::tunable::GemmAndBiasTunableOp<scalar_t, at::cuda::tunable::BlasOp::T, at::cuda::tunable::BlasOp::T> gemm{};
gemm(¶ms);
}
else if (transa_ && !transb_) {
static at::cuda::tunable::GemmAndBiasTunableOp<scalar_t, at::cuda::tunable::BlasOp::T, at::cuda::tunable::BlasOp::N> gemm{};
gemm(¶ms);
}
else if (!transa_ && transb_) {
static at::cuda::tunable::GemmAndBiasTunableOp<scalar_t, at::cuda::tunable::BlasOp::N, at::cuda::tunable::BlasOp::T> gemm{};
gemm(¶ms);
}
else if (!transa_ && !transb_) {
static at::cuda::tunable::GemmAndBiasTunableOp<scalar_t, at::cuda::tunable::BlasOp::N, at::cuda::tunable::BlasOp::N> gemm{};
gemm(¶ms);
}
else {
TORCH_CHECK(false, "unreachable");
}
}
Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Activation activation=Activation::None) {
// Make sure to keep addmm_cuda below in sync with this code; it
// preflights a check to try to avoid actually needing to call
// expand().
TORCH_CHECK(mat1.dim() == 2 && mat2.dim() == 2, "tensors must be 2-D");
TORCH_CHECK(
mat1.dtype() == mat2.dtype(),
"expected mat1 and mat2 to have the same dtype, but got: ", mat1.dtype(), " != ", mat2.dtype()
)
TensorArg targs[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}};
checkAllSameGPU(__func__, targs);
IntArrayRef mat1_sizes = mat1.sizes();
IntArrayRef mat2_sizes = mat2.sizes();
IntArrayRef self__sizes;
bool useLtInterface = false;
static bool disable_addmm_cuda_lt = getDisableAddmmCudaLt();
at::ScalarType scalar_type = self.scalar_type();
c10::MaybeOwned<Tensor> self_;
if (&result != &self) {
#if (defined(CUDA_VERSION) && (CUDA_VERSION >= 11040)) || defined(USE_ROCM)
// Strangely, if mat2 has only 1 row or column, we get
// CUBLAS_STATUS_INVALID_VALUE error from cublasLtMatmulAlgoGetHeuristic.
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
// is to use lt interface only when self is bias.
// for cuda 11.4, cublasLtMatmul is activated
// the last two conditions is to skip 16b transA and non-trans-B having
// leading dim >> rows when they are sliced from a large tensor
// see fbcode/caffe2/test/test_linalg.py:test_corner_cases_of_cublasltmatmul
if (!disable_addmm_cuda_lt) {
useLtInterface = beta.toComplexDouble() == 1.0 && self.dim() == 1 &&
result.dim() == 2 && self.sizes()[0] == mat2_sizes[1] &&
self.is_contiguous() && result.is_contiguous() &&
#ifdef USE_ROCM
isSupportedHipLtROCmArch(self.device().index()) &&
(scalar_type == at::ScalarType::Float ||
scalar_type == at::ScalarType::Half ||
scalar_type == at::ScalarType::BFloat16) &&
#else
(scalar_type == at::ScalarType::Double ||
scalar_type == at::ScalarType::Float ||
scalar_type == at::ScalarType::Half ||
scalar_type == at::ScalarType::BFloat16) &&
#endif
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12010 && !defined(USE_ROCM))
mat2_sizes[0] > 1 && mat2_sizes[1] > 1;
#else
mat2_sizes[0] > 1 && mat2_sizes[1] > 1 &&
mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 &&
mat1_sizes[0] < 65535 * 32 && mat1_sizes[1] < 65535 * 32 &&
// avoid leading dim >> rows bugs
((mat1.strides()[0] == 1 && mat1.strides()[1] == mat1_sizes[0]) ||
(mat1.strides()[1] == 1 && mat1.strides()[0] == mat1_sizes[1]) ||
(scalar_type != at::ScalarType::Half &&
scalar_type != at::ScalarType::BFloat16)) &&
((mat2.strides()[0] == 1 && mat2.strides()[1] == mat2_sizes[0]) ||
(mat2.strides()[1] == 1 && mat2.strides()[0] == mat2_sizes[1]) ||
(scalar_type != at::ScalarType::Half &&
scalar_type != at::ScalarType::BFloat16));
#endif
}
#endif
if (!useLtInterface) {
self_ = expand_size(self, {mat1_sizes[0], mat2_sizes[1]}, "addmm");
}
self__sizes = self_->sizes();
} else {
#if defined(USE_ROCM)
useLtInterface = !disable_addmm_cuda_lt &&
result.dim() == 2 && result.is_contiguous() &&
isSupportedHipLtROCmArch(self.device().index()) &&
(scalar_type == at::ScalarType::Float ||
scalar_type == at::ScalarType::Half ||
scalar_type == at::ScalarType::BFloat16);
#endif
self_ = c10::MaybeOwned<Tensor>::borrowed(self);
self__sizes = self_->sizes();
TORCH_CHECK(result.dim() == 2, "tensors must be 2-D");
TORCH_CHECK(self__sizes[0] == mat1_sizes[0], "self_ dim 0 must match mat1 dim 0");
TORCH_CHECK(self__sizes[1] == mat2_sizes[1], "self_ dim 1 must match mat2 dim 1");
}
if (&result != &self) {
at::native::resize_output(result, {mat1_sizes[0], mat2_sizes[1]});
if (beta.toComplexDouble() != 0.0 && !useLtInterface) {
at::native::copy_(result, *self_);
}
}
IntArrayRef result_sizes = result.sizes();
if ((result_sizes[0] == 0) || (result_sizes[1] == 0)) {
return result;
}
cublasCommonArgs args(mat1, mat2, result);
if (mat1.numel() == 0) {
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (beta.toComplexDouble() == 0.) {
return result.zero_();
}
// TODO: We could squeeze some perf by calling at::cuda::mul_out here instead, to bypass the dispatcher.
// That requires some fixing some internal build dependencies though.
return at::mul_out(
result,
self.expand(result.sizes()),
at::native::scalar_tensor(
beta,
self.scalar_type(),
std::nullopt /* layout */,
at::kCPU,
std::nullopt /* pin_memory */));
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!args.result->is_conj());
if (useLtInterface) {
#if defined(USE_ROCM)
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
scalar_type,
"addmm_cuda_lt",
[&] {
auto tuning_ctx = at::cuda::tunable::getTuningContext();
if (tuning_ctx->IsTunableOpEnabled()) {
launchTunableGemmAndBias<scalar_t>(
args,
alpha,
(&result != &self) ? self.const_data_ptr<scalar_t>() : nullptr,
activation_to_gemm_and_blas_arg(activation));
}
else {
at::cuda::blas::gemm_and_bias<scalar_t>(
args.transa == 't',
args.transb == 't',
args.m,
args.n,
args.k,
alpha.to<at::opmath_type<scalar_t>>(),
args.mata->const_data_ptr<scalar_t>(),
args.lda,
args.matb->const_data_ptr<scalar_t>(),
args.ldb,
// This condition is needed for mm case on ROCm for hipblasLt path.
// Passing the bias ptr as null to avoid accuracy issues for mm case.
(&result != &self) ? self.const_data_ptr<scalar_t>() : nullptr,
args.result->data_ptr<scalar_t>(),
args.result_ld,
activation_to_gemm_and_blas_arg(activation)
);
}});
#else
auto activation_epilogue = activation_to_gemm_and_blas_arg(activation);
#if (defined(CUDA_VERSION) && (CUDA_VERSION < 11080))
// GELU is not supported (and does not compile!) prior
// to CUDA 11.4. Have observed accuracy issues with
// GELU epilogue in 11.4; disabling the GELU epilogue
// path for CUDA version < 11.8.
if (activation == Activation::GELU)
activation_epilogue = cuda::blas::GEMMAndBiasActivationEpilogue::None;
#endif
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
scalar_type,
"addmm_cuda_lt",
[&] {
auto tuning_ctx = at::cuda::tunable::getTuningContext();
if (tuning_ctx->IsTunableOpEnabled()) {
launchTunableGemmAndBias<scalar_t>(
args,
alpha,
self.const_data_ptr<scalar_t>(),
activation_epilogue);
}
else {
at::cuda::blas::gemm_and_bias<scalar_t>(
args.transa == 't',
args.transb == 't',
args.m,
args.n,
args.k,
alpha.to<at::opmath_type<scalar_t>>(),
args.mata->const_data_ptr<scalar_t>(),
args.lda,
args.matb->const_data_ptr<scalar_t>(),
args.ldb,
self.const_data_ptr<scalar_t>(),
args.result->data_ptr<scalar_t>(),
args.result_ld,
activation_epilogue
);
}});
#endif
} else
{
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
scalar_type,
"addmm_cuda",
[&] {
using opmath_t = at::opmath_type<scalar_t>;
opmath_t alpha_val = alpha.to<opmath_t>();
opmath_t beta_val = beta.to<opmath_t>();
const scalar_t* mat1_ptr = args.mata->const_data_ptr<scalar_t>();
const scalar_t* mat2_ptr = args.matb->const_data_ptr<scalar_t>();
scalar_t* result_ptr = args.result->mutable_data_ptr<scalar_t>();
at::cuda::blas::gemm<scalar_t>(
args.transa,
args.transb,
args.m,
args.n,
args.k,
alpha_val,
mat1_ptr,
args.lda,
mat2_ptr,
args.ldb,
beta_val,
result_ptr,
args.result_ld);
});
switch (activation) {
case Activation::RELU:
at::relu_(const_cast<Tensor&>(*args.result));
break;
case Activation::GELU:
at::gelu_(const_cast<Tensor&>(*args.result), "tanh");
break;
default: break;
}
}
// Preprocessor gate here needs to match the inverse of the check
// gating activation_to_gemm_and_blas_arg above; here we are manually
// performing a post-GELU because we weren't able to use the GELU
// epilogue above.
#if !(defined(CUDA_VERSION) && CUDA_VERSION >= 11080) && !defined(USE_ROCM)
if (useLtInterface && activation == Activation::GELU) {
at::gelu_(const_cast<Tensor&>(*args.result), "tanh");
}
#endif
if (!result.is_same(*args.result)) {
result.copy_(*args.result);
}
return result;
}
const Tensor& baddbmm_out_cuda_impl(const Tensor& result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha) {
// handle pathological cases that blas may not like
if (result.numel() == 0) {
return result;
} else if (batch1.size(2) == 0) {
if (beta.to<c10::complex<double>>() == 0.0) {
return result.zero_();
} else {
return result.mul_(beta);
}
}
bool transpose_result = false;
c10::MaybeOwned<Tensor> result_;
IntArrayRef result_strides = result.strides();
IntArrayRef result_sizes = result.sizes();
if ((result_strides[1] == 1) &&
((result_sizes[2] == 1) || (result_strides[2] >= std::max<int64_t>(1, result_sizes[1])))) {
result_ = resolve_conj_if_indicated(result, true);
} else if ((result_strides[2] == 1) &&
(result_sizes[1] == 1 || (result_strides[1] >= std::max<int64_t>(1, result_sizes[2])))) {
transpose_result = true;
result_ = resolve_conj_if_indicated(result, true);
} else {
result_ = c10::MaybeOwned<Tensor>::owned(result.transpose(1, 2).clone(at::MemoryFormat::Contiguous).transpose(1, 2));
}
int leading_dim = transpose_result ? 1 : 2;
int64_t m = result_sizes[transpose_result ? 2 : 1];
int64_t n = result_sizes[leading_dim];
int64_t k = (transpose_result ? batch2 : batch1).sizes()[leading_dim];
int64_t lda, ldb, ldc;
bool transpose_batch1, transpose_batch2;
auto batch1_ = prepare_batch_matrix_for_cublas(transpose_result ? batch2 : batch1, transpose_batch1, lda, transpose_result, m, k);
auto batch2_ = prepare_batch_matrix_for_cublas(transpose_result ? batch1 : batch2, transpose_batch2, ldb, transpose_result, k, n);
ldc = result_->strides()[leading_dim];
int64_t num_batches = result_->sizes()[0];
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!result_->is_conj());
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "baddbmm_cuda", [&] {
using opmath_t = at::opmath_type<scalar_t>;
opmath_t alpha_val = alpha.to<opmath_t>();
opmath_t beta_val = beta.to<opmath_t>();
const scalar_t* batch1_ptr = batch1_->const_data_ptr<scalar_t>();
const scalar_t* batch2_ptr = batch2_->const_data_ptr<scalar_t>();
scalar_t* result_ptr = result_->mutable_data_ptr<scalar_t>();
const auto transa = transpose_batch1 ? batch1_->is_conj() ? 'c' : 't' : 'n';
const auto transb = transpose_batch2 ? batch2_->is_conj() ? 'c' : 't' : 'n';
// If batch is 1 call gemm rather than bgemm
if (num_batches == 1) {
at::cuda::blas::gemm<scalar_t>(
transa, transb,
m, n, k,
alpha_val,
batch1_ptr, lda,
batch2_ptr, ldb,
beta_val,
result_ptr, ldc);
} else {
at::cuda::blas::bgemm<scalar_t>(
transa, transb,
m, n, k,
alpha_val,
batch1_ptr, lda, batch1_->strides()[0],
batch2_ptr, ldb, batch2_->strides()[0],
beta_val,
result_ptr, ldc, result_->strides()[0],
num_batches
);
}
});
if (!result.is_same(*result_)) {
result.copy_(*result_);
}
return result;
}
} // anonymous namespace
TORCH_IMPL_FUNC(addmm_out_cuda)(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), self, mat1, mat2, beta, alpha);
}
TORCH_IMPL_FUNC(addmm_activation_out_cuda)(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, bool use_gelu, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), self, mat1, mat2, beta, alpha, use_gelu ? Activation::GELU : Activation::RELU);
}
TORCH_IMPL_FUNC(mm_out_cuda)(const Tensor& self, const Tensor& mat2, const Tensor& result) {
addmm_out_cuda_impl(const_cast<Tensor&>(result), result, self, mat2, 0, 1);
}
TORCH_IMPL_FUNC(baddbmm_out_cuda)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const Tensor& result) {
{
at::NoNamesGuard guard;
baddbmm_out_cuda_impl(result, self, batch1, batch2, beta, alpha);
}
}
TORCH_IMPL_FUNC(bmm_out_cuda)(const Tensor& batch1, const Tensor& batch2, const Tensor &result) {
Scalar beta(0.0);
Scalar alpha(1.0);
{
NoNamesGuard guard;
baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha);
}
}
namespace {
inline void dot_check(const Tensor& self, const Tensor& other) {
TORCH_CHECK(
self.dim() == 1 && other.dim() == 1,
"1D tensors expected, but got ",
self.dim(),
"D and ",
other.dim(),
"D tensors");
TORCH_CHECK(
self.scalar_type() == other.scalar_type(),
"dot : expected both vectors to have same dtype, but found ",
self.scalar_type(),
" and ",
other.scalar_type());
TORCH_CHECK(
self.numel() == other.numel(),
"inconsistent tensor size, expected tensor [",
self.numel(),
"] and src [",
other.numel(),
"] to have the same number of elements, but got ",
self.numel(),
" and ",
other.numel(),
" elements respectively");
TORCH_CHECK(
(self.numel() <= INT_MAX) && (self.stride(0) <= INT_MAX) &&
(other.stride(0) <= INT_MAX),
"dot only supports n, incx, incy with the bound [val] <= %d",
INT_MAX);
}
} // anonymous namespace
Tensor dot_cuda(const Tensor& self, const Tensor& other) {
if (self.is_complex()) {
if (self.is_conj()) {
if (other.is_conj()) {
return (dot_cuda(self.conj(), other.conj())).conj();
} else {
return vdot_cuda(self.conj(), other);
}
} else if (other.is_conj()) {
return vdot_cuda(other.conj(), self);
}
}
at::NoNamesGuard guard;
dot_check(self, other);
const int n = static_cast<int>(self.numel());
int incx = static_cast<int>(self.stride(0));
int incy = static_cast<int>(other.stride(0));
if (n == 1) {
incx = 1;
incy = 1;
}
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::Half, ScalarType::BFloat16,
self.scalar_type(), "dot",
[&] {
Tensor result = at::empty({}, self.options());
auto handle = at::cuda::getCurrentCUDABlasHandle();
at::cuda::blas::PointerModeGuard pointerModeGuard(handle, CUBLAS_POINTER_MODE_DEVICE);
at::cuda::blas::dot<scalar_t>(
handle,
n,
self.const_data_ptr<scalar_t>(),
incx,
other.const_data_ptr<scalar_t>(),
incy,
result.mutable_data_ptr<scalar_t>());
return result;
});
}
Tensor vdot_cuda(const Tensor& self, const Tensor& other) {
if (!self.is_complex()) {
return dot_cuda(self, other);
}
if (self.is_conj()) {
if (other.is_conj()) {
return vdot_cuda(other.conj(), self.conj());
} else {
return dot_cuda(self.conj(), other);
}
} else if (other.is_conj()) {
return (dot_cuda(self, other.conj())).conj();
}
at::NoNamesGuard guard;
dot_check(self, other);
if (self._is_zerotensor() || other._is_zerotensor()) {
return at::_efficientzerotensor({}, self.options());
}
const int n = static_cast<int>(self.numel());
int incx = static_cast<int>(self.stride(0));
int incy = static_cast<int>(other.stride(0));
if (n == 1) {
incx = 1;
incy = 1;
}
return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] {
Tensor result = at::empty({}, self.options());
auto handle = at::cuda::getCurrentCUDABlasHandle();
at::cuda::blas::PointerModeGuard pointerModeGuard(
handle, CUBLAS_POINTER_MODE_DEVICE);
at::cuda::blas::vdot<scalar_t>(
handle,
n,
self.const_data_ptr<scalar_t>(),
incx,
other.const_data_ptr<scalar_t>(),
incy,
result.mutable_data_ptr<scalar_t>());
return result;
});
}
TORCH_IMPL_FUNC(addmv_out_cuda)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta_, const Scalar& alpha_, const Tensor& result) {
c10::MaybeOwned<Tensor> self_ = expand_size(self, {mat.size(0)});
auto betaval = beta_.toComplexDouble();
if (mat.numel() == 0) {
// shortcut for an empty matrix
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (betaval == 0.0) {
result.zero_();
} else {
at::mul_out(
const_cast<Tensor&>(result),
self,
at::native::scalar_tensor(
beta_, self.scalar_type(), std::nullopt /* layout */, at::kCPU, std::nullopt /* pin_memory */));
}
} else {
if (!result.is_same(*self_) && betaval != 0.0) { //if beta is 0, result contents will be zeroed later
at::native::copy_(const_cast<Tensor&>(result), *self_);
}
if (result.numel() != 0) {
auto r_stride = result.stride(0);
auto vec_stride = vec.stride(0);
// Check for contiguity of `vec` and update `vec_stride` accordingly
const auto vec_contiguous = vec_stride == 0 ? vec.contiguous() : vec;
// A vector can be contiguous and have a stride of zero if it has it is of length 1
vec_stride = std::max<int64_t>(vec_contiguous.stride(0), 1LL);
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, mat.scalar_type(), "addmv_impl_cuda", [&] {
auto beta = beta_.to<scalar_t>();
auto alpha = alpha_.to<scalar_t>();
if (mat.stride(0) == 1 && mat.stride(1) >= std::max<int64_t>(1, mat.size(0))) {
at::cuda::blas::gemv<scalar_t>('n',
mat.size(0), mat.size(1), alpha, mat.const_data_ptr<scalar_t>(), mat.stride(1), vec_contiguous.const_data_ptr<scalar_t>(),
vec_stride, beta, result.mutable_data_ptr<scalar_t>(), r_stride);
}
else if (mat.stride(1) == 1 && mat.stride(0) >= std::max<int64_t>(1, mat.size(1))) {
at::cuda::blas::gemv<scalar_t>('t',
mat.size(1), mat.size(0), alpha, mat.const_data_ptr<scalar_t>(), mat.stride(0),
vec_contiguous.const_data_ptr<scalar_t>(), vec_stride, beta, result.mutable_data_ptr<scalar_t>(), r_stride);
}
else {
Tensor cmat = mat.contiguous();
at::cuda::blas::gemv<scalar_t>('t',
mat.size(1), mat.size(0), alpha, cmat.const_data_ptr<scalar_t>(), cmat.stride(0),
vec_contiguous.const_data_ptr<scalar_t>(), vec_stride, beta, result.mutable_data_ptr<scalar_t>(), r_stride);
}
});
}
}
}
Tensor& _int_mm_out_cuda(const Tensor& self, const Tensor& mat2, Tensor& result) {
// NOTE: cuBLAS is currently broken for some combination of transposed inputs.
TORCH_CHECK(self.dim() == 2, "Expected self to be of dimension 2 but got ", self.dim());
TORCH_CHECK(mat2.dim() == 2, "Expected mat2 to be of dimension 2 but got ", mat2.dim());
TORCH_CHECK(self.size(0) > 16, "self.size(0) needs to be greater than 16, but got ", self.size(0));
TORCH_CHECK(self.size(1) > 0 && self.size(1) % 8 == 0, "self.size(1) needs to be greater than 0 and a multiple of 8, but got ", self.size(1));
TORCH_CHECK(self.size(1) == mat2.size(0), "self.size(1) needs to match mat2.size(0) but got ", self.size(1), " and ", mat2.size(0));
TORCH_CHECK(mat2.size(1) > 0 && mat2.size(1) % 8 == 0, "mat2.size(1) needs to be greater than 0 and a multiple of 8, but got ", mat2.size(1));
TORCH_CHECK(result.dtype() == at::kInt, "Expected result dtype to be of type kInt but got ", result.dtype());
TORCH_CHECK(result.size(0) == self.size(0), "Expected result.size(0) to be ", self.size(0), " but got ", result.size(0));
TORCH_CHECK(result.size(1) == mat2.size(1), "Expected result.size(1) to be ", mat2.size(1), " but got ", result.size(1));
TORCH_CHECK(result.dim() == 2, "Expected result to be of dimension 2 but got ", result.dim());
TORCH_CHECK(result.is_contiguous(), "Expected result to be contiguous.");
#if (defined(CUDA_VERSION) && (CUDA_VERSION >= 11070)) || defined(USE_ROCM)
cublasCommonArgs args(self, mat2, result);
at::cuda::blas::int8_gemm(
args.transa == 't',
args.transb == 't',
args.m,
args.n,
args.k,
args.mata->data_ptr<int8_t>(),
args.lda,
args.matb->data_ptr<int8_t>(),
args.ldb,
args.result->data_ptr<int32_t>(),
args.result_ld);
if (!result.is_same(*args.result)) {
result.copy_(*args.result);
}
#else
#if !defined(USE_ROCM) && defined(CUDA_VERSION)
TORCH_CHECK(false, "_int_mm_out_cuda not compiled for CUDA ", CUDA_VERSION);
#else
TORCH_CHECK(false, "_int_mm_out_cuda not compiled for this platform.");
#endif
#endif
return result;
}
Tensor _int_mm_cuda(const Tensor& self, const Tensor& mat2) {
Tensor result = at::empty({self.size(0), mat2.size(1)}, self.options().dtype(at::kInt));
return _int_mm_out_cuda(self, mat2, result);
}
static bool _scaled_mm_allowed_device() {
auto dprops = at::cuda::getCurrentDeviceProperties();
#ifdef USE_ROCM
std::string device_arch = dprops->gcnArchName;
static const std::vector<std::string> archs = {"gfx940", "gfx941", "gfx942"};
for (std::string arch : archs) {
size_t substring = device_arch.find(arch);
if (substring != std::string::npos) {
return true;
}
}
return false;
#else
return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9);
#endif
}
namespace{
enum class ScalingType {
TensorWise,
RowWise,
Error
};
/*
* Scaling Type Determination:
* ---------------------------
* Conditions and corresponding Scaling Types:
*
* - If scale_a.numel() == 1 && scale_b.numel() == 1:
* - Returns TensorWise.
*
* - Else if scale_a.dim() == 1 && scale_a.size(0) == dim_m && scale_b.size(0) == dim_n:
* - Returns RowWise.
*
* - Otherwise:
* - Returns Error.
*/
// Validates the scale tensors to scaled_mm
// And returns the type of scaling/which kernel to use
ScalingType get_scaling_type(
const at::Tensor& scale_a,
const at::Tensor& scale_b,
int64_t dim_m,
int64_t dim_n) {
// Both Per-Tensor and Row-wise scaling expect fp32 tensors
TORCH_CHECK(
scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat,
"Both scale_a and scale_b must be float (fp32) tensors.");
// Check the singluar scale case for per-tensor scaling
if (scale_a.numel() == 1 && scale_b.numel() == 1) {
return ScalingType::TensorWise;
}
// For non-TensorWise scaling, enforce 2D input tensors
TORCH_CHECK(
scale_a.dim() == 2 && scale_b.dim() == 2,
"For non-TensorWise scaling, scale tensors must be 2-dimensional, "
"but got scale_a.dim()=",
scale_a.dim(),
" and scale_b.dim()=",
scale_b.dim());
// Check for RowWise scaling
if (scale_a.size(0) == dim_m && scale_a.size(1) == 1 &&
scale_b.size(0) == 1 && scale_b.size(1) == dim_n) {
#if !defined(USE_ROCM) && !defined(_MSC_VER) || \
(defined(USE_ROCM) && ROCM_VERSION >= 60000)
TORCH_CHECK(
scale_a.is_contiguous() && scale_b.is_contiguous(),
"Both scale_a and scale_b must be contiguous for RowWise scaling.");
return ScalingType::RowWise;
#else
TORCH_CHECK(false, "Per-row scaling is not supported for this platform!");
return ScalingType::Error;
#endif
}
// If we reach here, the input doesn't match any valid scaling type
TORCH_CHECK(
false,
"Invalid scaling configuration. For TensorWise scaling, both scales should be scalar. "
"For RowWise scaling, scale_a should be (",
dim_m,
", 1) and scale_b should be (1, ",
dim_n,
"). "
"Got scale_a.size()=(",
scale_a.size(0),
", ",
scale_a.size(1),
") and ",
"scale_b.size()=(",
scale_b.size(0),
", ",
scale_b.size(1),
")");
return ScalingType::Error;
}
} // namespace
// Computes matrix multiply + bias while applying scaling to input and output matrices and computes amax
// Scales are only applicable when matrices are of Float8 type and assumbed to be equal to 1.0 by default.
// If output matrix type is 16 or 32-bit type, neither scale_result is applied nor amax is computed.
// Known limitations:
// - Only works if mat1 is row-major and mat2 is column-major
// - Only works if matrices sizes are divisible by 32
// - If 1-dimensional tensors are used then scale_a should be size = mat1.size(0)
// and scale_b should have size = to mat2.size(1)
// Arguments:
// - `mat1`: the first operand of the matrix multiply, can be type `torch.float8_e4m3fn` or `torch.float8_e5m2`
// - `mat2`: the second operand of the matrix multiply, can be type `torch.float8_e4m3fn` or `torch.float8_e5m2`
// - `bias`: the bias, can be type `torch.float16` or `torch.bfloat16`
// - `out_dtype`: the output dtype, can either be a float8 or a higher precision floating point type
// - `scale_a`: a scalar or 1-dimensional tensor with the inverse scale of `mat1`, only needed if `mat1` is a float8 type
// - `scale_b`: a scalar or 1-dimensional tensor with the inverse scale of `mat2`, only needed if `mat2` is a float8 type
// - `scale_result`: a scalar tensor with the scale of the output, only utilized if the output is a float8 type
// - `use_fast_accum`: if true, enables fast float8 accumulation
// - `out`: a reference to the output tensor
Tensor&
_scaled_mm_out_cuda(const Tensor& mat1, const Tensor& mat2,
const Tensor& scale_a,
const Tensor& scale_b,
const std::optional<at::Tensor>& bias,
const std::optional<at::Tensor>& scale_result,
std::optional<c10::ScalarType> out_dtype,
bool use_fast_accum,
Tensor& out) {
// Check sizes
bool allowed_device = _scaled_mm_allowed_device();
TORCH_CHECK(allowed_device, "torch._scaled_mm is only supported on CUDA devices with compute capability >= 9.0 or 8.9, or ROCm MI300+");
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix");
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix");
TORCH_CHECK(