-
Notifications
You must be signed in to change notification settings - Fork 22
/
demo.py
128 lines (108 loc) · 5.23 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, Geoff Webb
#
# @article{
# Tan2020TSER,
# title={Time Series Extrinsic Regression},
# author={Tan, Chang Wei and Bergmeir, Christoph and Petitjean, Francois and Webb, Geoffrey I},
# journal={Data Mining and Knowledge Discovery},
# pages={1--29},
# year={2021},
# publisher={Springer},
# doi={https://doi.org/10.1007/s10618-021-00745-9}
# }
import argparse
import numpy as np
from utils.data_loader import load_from_tsfile_to_dataframe
from utils.regressor_tools import process_data, fit_regressor, calculate_regression_metrics
from utils.tools import create_directory
from utils.transformer_tools import fit_transformer
module = "RegressionExperiment"
# transformer parameters
transformer_name = "none" # see transformer_tools.transformers
flatten = False # if flatten, do not transform per dimension
n_components = 10 # number of principal components
n_basis = 10 # number of basis functions
bspline_order = 4 # bspline order
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--data", required=False, default="data/")
parser.add_argument("-p", "--problem", required=False, default="Sample") # see data_loader.regression_datasets
parser.add_argument("-c", "--regressor", required=False, default="rocket") # see regressor_tools.all_models
parser.add_argument("-i", "--iter", required=False, default=1)
parser.add_argument("-n", "--norm", required=False, default="none") # none, standard, minmax
arguments = parser.parse_args()
# start the program
if __name__ == '__main__':
data_path = arguments.data
problem = arguments.problem # see data_loader.regression_datasets
regressor_name = arguments.regressor # see regressor_tools.all_models
itr = arguments.iter
norm = arguments.norm # none, standard, minmax
# create output directory
output_directory = "output/regression/"
if norm != "none":
output_directory = "output/regression_{}/".format(norm)
output_directory = output_directory + regressor_name + '/' + problem + '/itr_' + str(itr) + '/'
create_directory(output_directory)
print("=======================================================================")
print("[{}] Starting Holdout Experiments".format(module))
print("=======================================================================")
print("[{}] Data path: {}".format(module, data_path))
print("[{}] Output Dir: {}".format(module, output_directory))
print("[{}] Iteration: {}".format(module, itr))
print("[{}] Problem: {}".format(module, problem))
print("[{}] Regressor: {}".format(module, regressor_name))
print("[{}] Transformer: {}".format(module, transformer_name))
print("[{}] Normalisation: {}".format(module, norm))
# set data folder, train & test
data_folder = data_path + problem + "/"
train_file = data_folder + problem + "_TRAIN.ts"
test_file = data_folder + problem + "_TEST.ts"
# loading the data. X_train and X_test are dataframe of N x n_dim
print("[{}] Loading data".format(module))
X_train, y_train = load_from_tsfile_to_dataframe(train_file)
X_test, y_test = load_from_tsfile_to_dataframe(test_file)
print("[{}] X_train: {}".format(module, X_train.shape))
print("[{}] X_test: {}".format(module, X_test.shape))
# in case there are different lengths in the dataset, we need to consider that.
# assume that all the dimensions are the same length
print("[{}] Finding minimum length".format(module))
min_len = np.inf
for i in range(len(X_train)):
x = X_train.iloc[i, :]
all_len = [len(y) for y in x]
min_len = min(min(all_len), min_len)
for i in range(len(X_test)):
x = X_test.iloc[i, :]
all_len = [len(y) for y in x]
min_len = min(min(all_len), min_len)
print("[{}] Minimum length: {}".format(module, min_len))
# process the data into numpy array with (n_examples, n_timestep, n_dim)
print("[{}] Reshaping data".format(module))
x_train = process_data(X_train, normalise=norm, min_len=min_len)
x_test = process_data(X_test, normalise=norm, min_len=min_len)
# transform the data if needed
if transformer_name != "none":
if transformer_name == "pca":
kwargs = {"n_components": n_components}
elif transformer_name == "fpca":
kwargs = {"n_components": n_components}
elif transformer_name == "fpca_bspline":
kwargs = {"n_components": n_components,
"n_basis": n_basis,
"order": bspline_order,
"smooth": "bspline"}
else:
kwargs = {}
x_train, transformer = fit_transformer(transformer_name, x_train, flatten=flatten, **kwargs)
x_test = transformer.transform(x_test)
print("[{}] X_train: {}".format(module, x_train.shape))
print("[{}] X_test: {}".format(module, x_test.shape))
# fit the regressor
regressor = fit_regressor(output_directory, regressor_name, x_train, y_train, x_test, y_test, itr=itr)
# start testing
y_pred = regressor.predict(x_test)
df_metrics = calculate_regression_metrics(y_test, y_pred)
print(df_metrics)
# save the outputs
df_metrics.to_csv(output_directory + 'regression_experiment.csv', index=False)