-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDistributionHandler.py
260 lines (217 loc) · 8.76 KB
/
DistributionHandler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import pickle
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
from numba import njit, prange
@njit()
def pdf(mu, sig, X):
"""
Probability Density function for the Gaussian Normal Distribution
:param mu: mean of distribution
:param sig: standard div of distribution
:param X: point on distribution
:return: instantaneous density of X under distribution
"""
return np.exp(-np.power(X - mu, 2) / (2 * sig ** 2)) / np.sqrt(2 * np.pi * sig ** 2)
@njit()
def cdf(mu, sig, x, delta):
"""
Simple Quad integration of the PDF between X and X+Delta
:param mu: mean of distribution
:param sig: standard div of distribution
:param x: point on distribution
:param delta: small margin to go up the distribution (defined to make a closed area)
:return: the probability of being this price
"""
DX = np.linspace(x, x + delta)[1] - x
return pdf(mu, sig, np.linspace(x, x + delta)).sum() * DX
@njit()
def call(strike, mu, sig, partial):
"""
Calculate The Discrete Price Estimate for a Call for an underlying with given Mean and ST Div
:param strike: strike price of the option
:param mu: mean of distribution
:param sig: standard deviation of distribution
:param partial: the Survival Function at 0 to scale the CDF by
:return: estimate of call price
"""
su = 0.0
DX = np.linspace(0, max(mu * 3, 10), 500)[1]
for i in np.linspace(0, max(mu * 3, 10), 500):
su += max(0, i - strike) * cdf(mu, sig, i, DX) / (1 - partial)
return su
@njit()
def put(strike, mu, sig, partial):
"""
Calculate The Discrete Price Estimate for a Call for an underlying with given Mean and ST Div
:param strike: strike price of option
:param mu: mean of distribution
:param sig: standard deviation of distribution
:param partial: the Survival Function at 0 to Scale the CDF by
:return: estimate of put price
"""
su = 0.0
DX = np.linspace(0, max(mu * 3, 10), 500)[1]
for i in np.linspace(0, max(mu * 3, 10), 500):
su += max(0, strike - i) * cdf(mu, sig, i, DX) / (1 - partial)
return su
@njit(parallel=True)
def bayes_error(X0: np.array, f_statics, curStock) -> int:
"""
Calculate the Root Sum Squared Weighted Error weighted by the vol column in f_statics
:param X0: (?, 3) array of form (weight, mean, std)
:param f_statics: (?, 4) array of form (strike_price, is_call, mark_price, error_weighting_factor)
:param curStock: the current stock price of the underlying asset
:return: Root Sum Squared Weighted Error
"""
partial = np.zeros(X0.shape[0])
for i in prange(X0.shape[0]):
weight, mu, sig = X0[i][0], X0[i][1], X0[i][2]
for r in np.arange(-50, 0, .01):
partial[i] += cdf(mu, sig, r, .01)
errn = np.zeros(f_statics.shape[0])
for i in prange(f_statics.shape[0]):
strike, typ, mark, vol = f_statics[i]
for j in prange(X0.shape[0]):
weight, mu, sig = X0[j][0], X0[j][1], X0[j][2]
part = partial[j]
if typ:
errn[i] += call(strike, mu, sig, part) * weight
else:
errn[i] += put(strike, mu, sig, part) * weight
errn[i] -= mark
errn[i] = errn[i] ** 2 * vol
errn = errn / f_statics[:, 3].sum()
return np.sqrt(errn.sum())
def static_array(f_statics, ticker=b'GME') -> np.array:
"""
Transform the f_statics dictionary into a numba conformal array
:param f_statics: the f_statics dictionary loaded from the message pack file
:param ticker: the specific ticker to extract from the f_statics dictionary
:return: np.array containing only floats so it may be passed into Numba decorated functions
"""
return np.array([[strike,
1.0 if y == b'C' else 0.0,
float(data.get(b'mark_price')),
np.log(float(data.get(b'open_interest')) + 1)]
for strike, opt in f_statics[ticker].items()
for y, data in opt.items()])
def PDF(x0, x_spread):
"""
Calculate the Values for the probability Density function across the SPREAD array initiated at top of file
:param x0: The minimization result array
:param x_spread: the X values to evaluate the PDF at
:return: The PDF calculated for each element in the spread array
"""
x0 = x0.reshape((-1, 3))
res = np.zeros_like(x_spread)
# res2 = np.zeros_like(x_spread)
# dists = [(w, scipy.stats.norm(m, s)) for w, m, s in X0]
# for i in range(x_spread.shape[0]):
# res2[i] = sum(w * d.pdf(x_spread[i]) for w, d in dists)
for w, mu, sig in x0:
res += pdf(mu, sig, x_spread) * w
return res / x0[:, 0].sum(), # res2
def CDF(x0, x_spread):
"""
Calculate the Values for the Cumulative density function across the SPREAD array initiated at the top of file
:param x0: the minimization result array
:param x_spread: the X values to evaluate the CDF at
:return: The CDF calculated for each element in the x_spread array
"""
x0 = x0.reshape((-1, 3))
dists = [(w, scipy.stats.norm(m, s), scipy.stats.norm(m, s).cdf(0)) for w, m, s in x0]
return np.array([sum(w * (d.cdf(x) - partial) / (1 - partial) for w, d, partial in dists) for x in x_spread])
def CI(X0: np.array, f_static: np.array):
"""
Calculate the 5% and 95% confidence interval
:param X0: the minimization result array
:param f_static: the statics
:return: the 2 confidence intervals
"""
ub = max(f_static[:, 0]) / 2
dx = ub / 5
x_spread = np.linspace(0, ub, 1001)
cd = CDF(X0, x_spread)
while (cd < .05).all():
x_spread = np.linspace(ub, ub + dx, 201)
ub += dx
cd = CDF(X0, x_spread)
five = x_spread[np.array(CDF(X0, x_spread)) < .05][-1]
while not (cd > .95).any():
x_spread = np.linspace(ub, ub + dx, 201)
ub += dx
cd = CDF(X0, x_spread)
ninefive = x_spread[np.array(CDF(X0, x_spread)) > .95][0]
return five, ninefive
def graphs(m, f_statics, x_spread, curStock):
"""
Plot out the 5 different Charts to visualize the minimization
:param m: the minimization
:param f_statics: the f_statics to compare against
:param x_spread: the X values to evaluate the curves at
:param curStock: the current stock price of the underlying asset
:return: Nothing
"""
plt.annotate("Profitable", (0, 10))
plt.annotate("OverPriced", (0, -10))
plt.hlines(0, f_statics[:, 0].min(), f_statics[:, 0].max())
plt.scatter([k for k, pc, _, _ in f_statics if pc],
[sum(call(k, m, s, 0) * w for w, m, s in m.x) - p
for k, pc, p, _ in f_statics if pc],
c='red')
plt.scatter([k for k, pc, *_ in f_statics if not pc],
[sum(put(k, m, s, 0) * w for w, m, s in m.x) - p
for k, pc, p, _ in f_statics if not pc],
c='blue')
plt.legend(["breakeven", "call", "put"])
plt.title("Price Differences")
plt.figure()
plt.title("Calls")
plt.scatter([k for k, pc, _, _ in f_statics if pc],
[sum(call(k, m, s, 0) * w for w, m, s in m.x)
for k, pc, p, _ in f_statics if pc],
c='red')
plt.scatter([k for k, pc, *_ in f_statics if pc],
[p
for k, pc, p, _ in f_statics if pc],
c='blue')
plt.legend(['Estimated', 'Actual Price'])
print(*m.x.reshape((-1, 3)).tolist(), sep='\n')
plt.figure()
plt.scatter(f_statics[:, 0], f_statics[:, -1])
plt.title("Volume")
plt.figure()
for i in range(1, m.x.shape[0] + 1):
pfds = PDF(m.x[i - 1:i], x_spread)
plt.plot(x_spread, -pfds[0])
plt.plot(x_spread, PDF(m.x, x_spread)[0], lw=5)
plt.ylim(-.1, .1)
plt.figure()
for i in range(1, m.x.shape[0] + 1):
plt.plot(x_spread, CDF(m.x[i - 1:i], x_spread), )
plt.plot(x_spread, CDF(m.x, x_spread), lw=5)
l, h = CI(m.x, f_statics)
print(l, h)
plt.vlines([l, h], 0, 1, colors='k')
plt.show(block=True)
def analyze(f_statics, cur_stock):
"""
Load up the minimization and list of intermediate minimizations from file and run analysis on them
:param f_statics: the f_statics to run against
:param cur_stock the current stock price of the underlying asset
:return: Nothing
"""
# Used for the display after optimizing - NOT Used in optimization
x_spread = np.linspace(0.01,
max(f_statics[:, 0]),
1000)
with open('pick.le', 'rb') as fin:
m = pickle.load(fin)
# with open('dill.pickle', 'rb') as fin:
# ma = pickle.load(fin)
print(m)
graphs(m, f_statics, x_spread=x_spread, curStock=cur_stock)
# for mx in ma:
# m.x = mx
# graphs(m, f_statics)