From 19ca89c6b02dfaa3efbb6e94ffd1df52345e4ebd Mon Sep 17 00:00:00 2001 From: Patrick Nicodemus Date: Fri, 3 Jan 2025 13:00:47 -0500 Subject: [PATCH] Set an appropriate rho value. --- docs/notebooks/Example_5.ipynb | 41 ++++++++++++++++++++++++++-------- 1 file changed, 32 insertions(+), 9 deletions(-) diff --git a/docs/notebooks/Example_5.ipynb b/docs/notebooks/Example_5.ipynb index 6628f75..1581ca6 100644 --- a/docs/notebooks/Example_5.ipynb +++ b/docs/notebooks/Example_5.ipynb @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "b6b7e64d", "metadata": {}, "outputs": [], @@ -52,16 +52,39 @@ "execution_count": 2, "id": "36765c5a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(645, 100, 100)\n", + "10865.144685592724\n", + "Done first pass.\n", + "CPU times: user 2d 1h 5min 41s, sys: 50.3 s, total: 2d 1h 6min 32s\n", + "Wall time: 2h 28min 12s\n" + ] + } + ], "source": [ "eps = 100.0\n", "UGW_dmat = UGW_multicore.ugw_armijo_pairwise(\n", - " mass_kept = 0.90,\n", + " mass_kept = 0.80,\n", " eps=eps,\n", - " dmats=join(bd,\"geodesic_100_icdm_50cells.csv\")\n", + " dmats=join(bd,\"geodesic_100_icdm.csv\")\n", ")" ] }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0a14b977-2b08-44f5-8bed-6ab2822a899a", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "np.save(\"UGW_dmat_mass_80_eps_100.npy\", UGW_dmat)" + ] + }, { "cell_type": "markdown", "id": "f09b79aa", @@ -73,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "78e048c4", "metadata": {}, "outputs": [ @@ -81,8 +104,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 0.7021276595744681\n", - "MCC: 0.4171682921141799\n" + "Accuracy: 0.5510204081632653\n", + "MCC: 0.4520340022810735\n" ] } ], @@ -92,7 +115,7 @@ "from sklearn.model_selection import LeaveOneOut, cross_val_score\n", "from cajal.utilities import cell_iterator_csv\n", "\n", - "cells, idcms = zip(*cell_iterator_csv(intracell_csv_loc=join(bd,\"geodesic_100_icdm_50cells.csv\")))\n", + "cells, idcms = zip(*cell_iterator_csv(intracell_csv_loc=join(bd,\"geodesic_100_icdm.csv\")))\n", "metadata = pd.read_csv(join(bd,'m1_patchseq_meta_data.csv'),sep='\\t',index_col='Cell').loc[pd.Series(cells)]\n", "RNA_family = metadata['RNA family']\n", "hq = RNA_family != 'low quality' # Filter down to the cells that have a well-defined RNA family.\n", @@ -126,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "46a4c5d8", "metadata": {}, "outputs": [