forked from mdekauwe/SOX_optimisation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSOX_optimisation.py
executable file
·198 lines (158 loc) · 7.06 KB
/
SOX_optimisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python
"""
Stomatal optimisation based on xylem hydraulics (SOX) model.
SOX hypothesis: find the gs maximises the product of leaf photosynthesis
and the xylem hydraulic conductance, i.e. dA.K / dgs = 0
References
==========
* Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL,
Meir P, Friend AD, Mencuccini M, Sitch S, et al. (2018). Modelling tropical
forest responses to drought and El Niño with a stomatal optimization model
based on xylem hydraulics. Philosophical transactions of the Royal Society
of London. Series B, Biological sciences 373: 20170315.
* Eller, C.B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A.,
Medlyn, B.E., Wagner, Y., Klein, T., Teodoro, G.S., Oliveira, R.S.,
Matos, I.S., Rosado, B.H., Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, P.,
Sitch, S. and Cox, P.M. (2020), Stomatal optimisation based on xylem
hydraulics (SOX) improves land surface model simulation of vegetation
responses to climate. New Phytol., DOI: doi:10.1111/nph.16419.
That's all folks.
"""
__author__ = "Martin De Kauwe"
__version__ = "1.0 (11.01.2020)"
__email__ = "[email protected]"
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from collatz_photosynthesis import CollatzC3
import constants as c
def sox_optimisation(Vcmax25, Tleaf, Cs, PAR, press, psi_pd, p50, a_vuln,
rp_min, dq, LAI, k=0.5):
C = CollatzC3()
# Calculate Ci at the co-limitation point, i.e. the point where increasing
# Ci won't lead to an increase in A because A would become light (Al) or
# transport limited (Ae)
Ci_col = C.calc_ci_at_colimitation_point(Cs, Tleaf, PAR, Vcmax25)
# Calculate dCi
dCi = Cs - Ci_col
# Calculate dA
A_Cs = C.calc_photosynthesis(Cs, Tleaf, PAR, Vcmax25) # Ambient leaf CO2
A_col = C.calc_photosynthesis(Ci_col, Tleaf, PAR, Vcmax25) # co-limit point
dA = A_Cs - A_col
# Calculate dA/dCi
dA_dci = dA / (dCi / press)
# Calculate dK
# The dK is computed as the linear gradient between K_pd and
# K((psi_pd+p50)/2), see supplementary...this isn't in the main manuscript.
# They use p50 as they argue this represents the steepest point of the
# vulnerability func K(psi_m).
K_pd = calc_xylem_hydraulic_conduc(psi_pd, p50, a_vuln)
psi_mid = (psi_pd + p50) / 2.0
K_psi_mid = calc_xylem_hydraulic_conduc(psi_mid, p50, a_vuln)
dK = K_pd - K_psi_mid
# Calculate dpsi_leaf
dpsi_leaf = (psi_pd - psi_mid)
# Calculate dK/dpsi_leaf
dK_dpsi_leaf = dK / dpsi_leaf
# plant hydraulic resistance (m2 s mol-1 H2O)
rp = rp_min / K_pd
# Calculate xi, the cost of stomatal opening in terms of loss of xylem
# conductivity under low Ψpd and/or higher leaf-to-air vapour pressure.
# Low xi = high hydraulic cost
xi = 2.0 / ( (1.0 / K_pd) * dK_dpsi_leaf * rp * c.GSVGSC * dq)
# Calculate gs at the co-limitation point
gs_col = (A_col * press / (Cs - Ci_col)) * c.GSVGSC
# Calculate gs (mol H2O m-2 s-1) using the analytical approximation for
# the optimal SOX gs using the partial derivatives of A with respect to Ci
# and K with respect to psi_m
if dA_dci <= 0.0:
gs = gs_col
else:
gs = 0.5 * dA_dci * (np.sqrt(4.0 * xi / dA_dci + 1) - 1.0)
gs *= c.GSVGSC
# Infer transpiration, assuming perfect coupling (mol H2O m-2 leaf s-1)
E = dq * gs
# Infer psi_leaf (MPa)
psi_leaf = psi_pd - (rp_min / K_pd) * E
# Infer plant hydraulic resistance (m2 s mol-1 H2O)
K = calc_xylem_hydraulic_conduc( (psi_pd + psi_leaf) / 2.0, p50, a_vuln)
rp = rp_min / K
# Infer An (mol CO2 m-2 leaf s-1)
gc = gs / c.GSVGSC
An = C.calc_photosynthesis_given_gc(Cs, Tleaf, PAR, Vcmax25, gc, press)
# Diagnose Ci (Pa)
Ci = Cs - An / (gc / press)
# Scale A (g C m-2 d-1) and E (mm d-1) up to the canopy using a
# big-leaf approximation
GPP = An * (1.0 - np.exp(-k * LAI)) / k
GPP *= c.MOL_C_TO_GRAMS_C * c.SEC_TO_DAY
E *= (1.0 - np.exp(-k * LAI)) / k
E *= c.MOL_WATER_2_G_WATER * c.G_TO_KG * c.SEC_TO_DAY
return (gs, GPP, E, Ci, rp)
def calc_xylem_hydraulic_conduc(psi, p50, a):
"""
Calculate the normalised (0 to 1) xylem hydraulic conductance (K), computed
from the inverse polynomial function that describes cavitation-induced
embolism.
Parameters:
----------
psi : float
water potential (MPa)
p50 : float
xylem pressure inducing 50% loss of hydraulic
conductivity due to embolism (MPa)
a : float
shape of the vulnerability curve (unitless)
Reference:
---------
* Manzoni S et al. (2013) Hydraulic limits on maximum plant transpiration and
the emergence of the safety – efficiency trade-off. New Phytol. 198,
169-178.
* Christoffersen BO et al. (2016) Linking hydraulic traits to tropical
forest function in a size-structured and trait-driven model
(TFS v.1-Hydro). Geosci. Model Dev. 9, 4227-4255.
"""
return 1.0 / (1.0 + (psi / p50)**a)
if __name__ == "__main__":
"""
Vcmax25 = 0.0001 # Maximum rate of rubisco activity 25C (mol m-2 s-1)
Tleaf = 20. # Leaf temp (deg C)
Cs = 36.0 # leaf CO2 partial pressure (Pa)
PAR = 0.002 # photosyn active radiation (mol m-2 s-1)
press = 101325.0 # atmospheric pressure (Pa)
psi_pd = -0.1 # pre-dawn soil water potential (MPa)
p50 = -2.0 # xylem pressure inducing 50% loss of hydraulic
# conductivity due to embolism (MPa)
a_vuln = 3.0 # shape of the vulnerability curve (unitless)
rp_min = 2000. # plant minimum hydraulic resistance
# (= 1/kmax; m2 s MPa mol-1 H2O)
dq = 0.02474747 # Leaf to air vapor pressure deficit (unitless)
LAI = 2.
(gs, GPP, E, Ci, rp) = sox_optimisation(Vcmax25, Tleaf, Cs, PAR, press,
psi_pd, p50, a_vuln, rp_min, dq,
LAI)
"""
Vcmax25 = 0.0001 # Maximum rate of rubisco activity 25C (mol m-2 s-1)
Tleaf = 20.0 # Leaf temp (deg C)
Cs = np.arange(1, 81) # leaf CO2 partial pressure (Pa)
PAR = 0.002 # photosyn active radiation (mol m-2 s-1)
press = 101325.0 # atmospheric pressure (Pa)
psi_pd = -0.1 # pre-dawn soil water potential (MPa)
p50 = -2.0 # xylem pressure inducing 50% loss of hydraulic
# conductivity due to embolism (MPa)
a_vuln = 3.0 # shape of the vulnerability curve (unitless)
rp_min = 2000. # plant minimum hydraulic resistance
# (= 1/kmax; m2 s MPa mol-1 H2O)
dq = 0.02474747 # Leaf to air vapor pressure deficit (unitless)
LAI = 2.
gs_store = []
for i in range(80):
(gs, GPP, E, Ci, rp) = sox_optimisation(Vcmax25, Tleaf, Cs[i], PAR,
press, psi_pd, p50, a_vuln,
rp_min, dq, LAI)
gs_store.append(gs)
Cs_umol_mol = Cs / press * c.MOL_TO_UMOL
plt.plot(Cs_umol_mol, gs_store)
plt.show()