-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathprepare_mano.py
42 lines (35 loc) · 1.29 KB
/
prepare_mano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from config import *
from kinematics import *
import numpy as np
from utils import *
def prepare_mano():
"""
Use this function to convert a mano model (from MANO-Hand Project) to the hand
model we want to use in the project.
"""
with open(OFFICIAL_MANO_PATH, 'rb') as f:
data = pickle.load(f, encoding='latin1')
output = {}
output['verts'] = np.array(data['v_template'])
output['faces'] = np.array(data['f'])
output['mesh_basis'] = np.transpose(data['shapedirs'], (2, 0, 1))
j_regressor = np.zeros([21, 778])
j_regressor[:16] = data['J_regressor'].toarray()
for k, v in MANOHandJoints.mesh_mapping.items():
j_regressor[k, v] = 1
output['j_regressor'] = j_regressor
output['joints'] = np.matmul(output['j_regressor'], output['verts'])
raw_weights = data['weights']
weights = [None] * 21
weights[0] = raw_weights[:, 0]
for j in 'IMLRT':
weights[MANOHandJoints.labels.index(j + '0')] = np.zeros(778)
for k in [1, 2, 3]:
src_idx = MANOHandJoints.labels.index(j + str(k - 1))
tar_idx = MANOHandJoints.labels.index(j + str(k))
weights[tar_idx] = raw_weights[:, src_idx]
output['weights'] = np.expand_dims(np.stack(weights, -1), -1)
with open(HAND_MESH_MODEL_PATH, 'wb') as f:
pickle.dump(output, f)
if __name__ == '__main__':
prepare_mano()