-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpure_inferenceProofScript.sml
4268 lines (4193 loc) · 184 KB
/
pure_inferenceProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open HolKernel Parse boolLib bossLib BasicProvers dep_rewrite;
open pairTheory arithmeticTheory stringTheory optionTheory pred_setTheory
listTheory rich_listTheory alistTheory finite_mapTheory sptreeTheory;
open mlmapTheory;
open pure_miscTheory pure_typingTheory pure_typingPropsTheory pure_typingProofTheory
pure_tcexpTheory pure_tcexp_lemmasTheory
pure_inference_commonTheory pure_unificationTheory
pure_inferenceTheory pure_inferencePropsTheory pure_inference_modelTheory;
local open cardinalTheory in end
val _ = new_theory "pure_inferenceProof";
Overload csubst = ``pure_apply_subst``;
(******************** Lemmas ********************)
Theorem minfer_itype_ok:
∀ns mset cexp as cs it.
minfer ns mset cexp as cs it ∧
namespace_ok ns
⇒ itype_ok (SND ns) 0 it
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[itype_ok_iFunctions, itype_ok] >>
gvs[LIST_REL_EL_EQN, EVERY_MAP, EVERY_MEM, itype_ok]
>- (rw[MEM_EL] >> first_x_assum drule >> simp[EL_ZIP])
>- gvs[oEL_THM]
>- (
Cases_on `tys` >> gvs[] >- (PairCases_on `ns` >> gvs[namespace_ok_def]) >>
Cases_on `final_cs` >> gvs[] >>
gvs[EL_ZIP] >> last_x_assum $ qspec_then `0` mp_tac >> simp[] >>
rpt (pairarg_tac >> simp[])
)
>- (
Cases_on `tys` >> gvs[]
>- (
PairCases_on `ns` >> gvs[namespace_ok_def, oEL_THM, EVERY_EL] >>
last_x_assum drule >> simp[]
) >>
Cases_on `final_cs` >> gvs[] >>
gvs[EL_ZIP] >> last_x_assum $ qspec_then `0` mp_tac >> simp[] >>
rpt (pairarg_tac >> simp[])
)
QED
Theorem minfer_msets:
∀ns mset cexp as cs it tsub vars tsup.
minfer ns mset cexp as cs it ∧
namespace_ok ns ∧
mImplicit tsub vars tsup ∈ cs
⇒ mset ⊆ vars
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[LIST_REL_EL_EQN, EL_ZIP, MEM_EL, MAP2_MAP, EL_MAP]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- (imp_res_tac infer_atom_op_LENGTH >> gvs[MAP2_MAP, EL_MAP, EL_ZIP])
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- (
first_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >>
pop_assum drule >> simp[]
)
>- (first_x_assum drule >> pairarg_tac >> gvs[])
>- (first_x_assum drule >> pairarg_tac >> gvs[])
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- (
ntac 2 $ first_x_assum drule >> pairarg_tac >> gvs[] >>
ntac 2 strip_tac >> reverse $ gvs[] >- metis_tac[] >>
qpat_x_assum `MEM _ _` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[MEM_MAP, MEM_ZIP, EXISTS_PROD] >>
reverse conj_tac >- (strip_tac >> gvs[]) >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
qsuff_tac `MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) ns0)`
>- (
rw[] >> gvs[MEM_MAP, EXISTS_PROD] >>
rev_drule ALOOKUP_ALL_DISTINCT_MEM >> disch_then drule >> simp[]
) >>
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
simp[Once MEM_EL, PULL_EXISTS] >> disch_then drule >> simp[DISJ_IMP_THM]
)
>- metis_tac[]
>- (
last_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >>
first_x_assum drule >> simp[] >>
strip_tac >> reverse $ gvs[] >- metis_tac[] >>
qpat_x_assum `MEM _ _` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[MEM_MAP, MEM_ZIP, EXISTS_PROD] >>
reverse conj_tac >- (strip_tac >> gvs[]) >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >> goal_assum drule >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
>- metis_tac[]
>- metis_tac[]
>- (
last_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >>
first_x_assum drule >> simp[] >>
strip_tac >> reverse $ gvs[] >- metis_tac[] >>
qpat_x_assum `MEM _ _` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[MEM_MAP, MEM_ZIP, EXISTS_PROD] >>
reverse conj_tac >- (strip_tac >> gvs[]) >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >>
disj1_tac >> simp[PULL_EXISTS] >> goal_assum $ drule_at Any >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
QED
Theorem minfer_msets_disjoint:
∀ns mset cexp as cs it.
minfer ns mset cexp as cs it ∧
namespace_ok ns
⇒ DISJOINT mset (new_vars as cs it)
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[new_vars_def, pure_vars, pure_vars_iFunctions, PULL_EXISTS, MEM_MAP,
LIST_REL_EL_EQN, EL_ZIP, MEM_EL, MAP2_MAP, EL_MAP, EVERY_EL] >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, FLOOKUP_FOLDR_maunion, FLOOKUP_FDIFF,
DOMSUB_FLOOKUP_THM, MEM_EL, PULL_EXISTS, PULL_FORALL] >>
gvs[FORALL_AND_THM, IMP_CONJ_THM]
>- (rw[] >> gvs[DISJOINT_BIGUNION, PULL_EXISTS] >> rw[] >> res_tac)
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (rw[] >> gvs[DISJOINT_BIGUNION, PULL_EXISTS] >> rw[] >> res_tac)
>- (
rw[] >> gvs[DISJOINT_BIGUNION, PULL_EXISTS] >> rw[] >> res_tac >>
irule SUBSET_DISJOINT >> irule_at Any pure_vars_isubst_SUBSET >>
simp[MAP_MAP_o, combinTheory.o_DEF, pure_vars, MEM_MAP, PULL_EXISTS] >>
irule_at Any SUBSET_REFL >> rw[MEM_EL] >> gvs[]
)
>- (
rw[] >> gvs[DISJOINT_BIGUNION, PULL_EXISTS] >> rw[] >> res_tac >>
imp_res_tac infer_atom_op_LENGTH >> simp[MAP2_MAP, EL_MAP, EL_ZIP, pure_vars]
)
>- (rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[])
>- (
rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[] >>
gvs[PULL_EXISTS] >> rw[MEM_EL] >> res_tac
)
>- (
rw[] >> gvs[EL_ZIP, pure_vars] >- (res_tac >> simp[]) >>
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >> metis_tac[DISJOINT_ALT]
)
>- (
rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[] >>
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >> metis_tac[DISJOINT_ALT]
)
>- (
rw[] >> every_case_tac >> gvs[] >> rw[]
>- res_tac
>- (last_x_assum drule >> pairarg_tac >> rw[] >> res_tac)
>- (last_x_assum drule >> pairarg_tac >> rw[] >> res_tac)
>- (last_x_assum drule >> pairarg_tac >> rw[] >> res_tac)
>- (last_x_assum drule >> pairarg_tac >> rw[] >> res_tac)
>- (last_x_assum drule >> pairarg_tac >> rw[] >> res_tac) >>
gvs[EL_ZIP] >> pairarg_tac >> gvs[pure_vars] >>
gvs[get_massumptions_def, FLOOKUP_maunion, FLOOKUP_FOLDR_maunion] >>
every_case_tac >> gvs[] >> rw[]
>- (
gvs[MEM_EL] >> last_x_assum rev_drule >> pairarg_tac >> rw[] >>
metis_tac[DISJOINT_ALT]
)
>- (last_x_assum drule >> rw[])
>- (first_x_assum drule >> metis_tac[DISJOINT_ALT])
>- (last_x_assum drule >> rw[])
)
>- (
rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[] >>
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >> metis_tac[DISJOINT_ALT]
)
>- (
rw[] >> every_case_tac >> gvs[] >> res_tac >> simp[] >>
gvs[EL_ZIP, EL_MAP, pure_vars] >>
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >> metis_tac[DISJOINT_ALT]
)
>- (
rw[] >> every_case_tac >> gvs[] >> rw[]
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- (
last_x_assum assume_tac >>
last_x_assum $ qspec_then `0` mp_tac >>
Cases_on `final_cs` >> gvs[] >> pairarg_tac >> simp[]
)
>- (
last_x_assum assume_tac >>
last_x_assum $ qspec_then `SUC n` mp_tac >>
Cases_on `final_cs` >> gvs[] >> pairarg_tac >> simp[] >>
Cases_on `tys` >> gvs[]
)
>- (
first_x_assum drule >> pairarg_tac >> rw[] >> gvs[pure_vars]
>- (
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >>
last_x_assum drule >> rw[] >> metis_tac[DISJOINT_ALT]
)
>- (
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[] >>
reverse conj_asm1_tac
>- (
simp[MEM_MAP, MEM_ZIP] >> rw[] >> gvs[pure_vars, EL_MAP] >>
qpat_x_assum `_ ∈ get_massumptions _ _` mp_tac >>
gvs[get_massumptions_def] >> CASE_TAC >> rw[] >>
last_x_assum drule >> rw[] >> metis_tac[DISJOINT_ALT]
) >>
simp[] >> PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
simp[Once MEM_EL, PULL_EXISTS] >>
disch_then drule >> rw[] >> gvs[] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> simp[]
)
>- (last_x_assum drule >> simp[])
)
>- (
last_x_assum assume_tac >>
last_x_assum $ qspec_then `0` mp_tac >>
Cases_on `final_cs` >> gvs[]
>- (PairCases_on `ns` >> gvs[namespace_ok_def]) >>
pairarg_tac >> simp[]
)
)
>- (
rw[] >> every_case_tac >> gvs[] >> rw[]
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- (
last_x_assum assume_tac >>
last_x_assum $ qspec_then `0` mp_tac >>
Cases_on `final_cs` >> gvs[] >> pairarg_tac >> simp[]
)
>- (
last_x_assum assume_tac >>
last_x_assum $ qspec_then `SUC n` mp_tac >>
Cases_on `final_cs` >> gvs[] >> pairarg_tac >> simp[] >>
Cases_on `tys` >> gvs[]
)
>- (
first_x_assum drule >> pairarg_tac >> rw[] >> gvs[pure_vars]
>- (
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >>
last_x_assum drule >> rw[] >> metis_tac[DISJOINT_ALT]
)
>- (
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[] >>
reverse conj_asm1_tac
>- (
simp[MEM_MAP, MEM_ZIP] >> rw[] >> gvs[pure_vars, EL_MAP] >>
qpat_x_assum `_ ∈ get_massumptions _ _` mp_tac >>
gvs[get_massumptions_def] >> CASE_TAC >> simp[] >> strip_tac >>
last_x_assum drule >> simp[] >> strip_tac >>
conj_tac >- metis_tac[DISJOINT_ALT] >>
irule SUBSET_DISJOINT >> irule_at Any pure_vars_isubst_SUBSET >>
simp[MAP_MAP_o, combinTheory.o_DEF, pure_vars, MEM_MAP, PULL_EXISTS] >>
irule_at Any SUBSET_REFL >> rw[MEM_EL] >> gvs[]
) >>
simp[] >> PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
`MEM (cn, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >> goal_assum drule >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
>- (last_x_assum drule >> simp[])
)
>- (
last_x_assum assume_tac >> last_x_assum $ qspec_then `0` mp_tac >>
reverse $ Cases_on `final_cs` >> gvs[]
>- (pairarg_tac >> simp[]) >>
PairCases_on `ns` >> gvs[namespace_ok_def] >>
gvs[EVERY_EL, oEL_THM] >> last_x_assum drule >> simp[]
)
)
>- (
rw[] >> every_case_tac >> gvs[] >> rw[]
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> rw[] >>
gvs[FLOOKUP_FDIFF] >> last_x_assum drule >> rw[] >> res_tac
)
>- res_tac
>- res_tac
>- res_tac
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >> gvs[] >>
gvs[FLOOKUP_FDIFF] >>
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >> simp[] >>
strip_tac >> first_x_assum drule >> simp[]
)
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >> gvs[] >>
gvs[FLOOKUP_FDIFF] >>
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >> simp[] >>
strip_tac >> first_x_assum drule >> simp[]
)
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >> gvs[] >>
gvs[FLOOKUP_FDIFF] >>
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >> simp[] >>
strip_tac >> first_x_assum drule >> simp[]
)
>- res_tac
>- res_tac
>- (
first_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >> gvs[] >>
gvs[FLOOKUP_FDIFF] >>
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >> simp[] >>
strip_tac >> first_x_assum drule >> simp[]
)
>- (
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >> pairarg_tac >> gvs[]
)
>- (
gvs[DISJOINT_ALT, get_massumptions_def] >> every_case_tac >> gvs[] >> res_tac
)
>- (
first_x_assum drule >> pairarg_tac >> rw[] >> gvs[pure_vars]
>- (
gvs[get_massumptions_def] >> every_case_tac >> gvs[] >>
rpt $ qpat_x_assum `∀n. n < LENGTH final_cs ⇒ _` drule >>
rw[DISJOINT_ALT] >> res_tac
)
>- (
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> simp[] >>
reverse conj_asm1_tac
>- (
simp[MEM_MAP, MEM_ZIP] >> rw[] >> gvs[pure_vars, EL_MAP] >>
qpat_x_assum `_ ∈ get_massumptions _ _` mp_tac >>
gvs[get_massumptions_def] >> CASE_TAC >> simp[] >> strip_tac >>
last_x_assum drule >> simp[] >> strip_tac >>
last_x_assum drule >> simp[] >> strip_tac >>
conj_tac >- metis_tac[DISJOINT_ALT] >>
irule SUBSET_DISJOINT >> irule_at Any pure_vars_isubst_SUBSET >>
simp[MAP_MAP_o, combinTheory.o_DEF, pure_vars, MEM_MAP, PULL_EXISTS] >>
irule_at Any SUBSET_REFL >> rw[MEM_EL] >> gvs[]
) >>
simp[] >> PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
`MEM (cn, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >>
disj1_tac >> simp[PULL_EXISTS] >> goal_assum $ drule_at Any >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
>- (rpt $ last_x_assum drule >> simp[])
)
)
QED
Theorem minfer_pure_vars[local]:
∀ns mset cexp as cs it v.
minfer ns mset cexp as cs it ∧
namespace_ok ns ∧
v ∈ pure_vars it
⇒ v ∈ new_vars as cs Exception
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[pure_vars, new_vars_def, pure_vars_iFunctions] >>
gvs[LIST_REL_EL_EQN, EL_ZIP, MEM_EL, MAP2_MAP, EL_MAP,
PULL_EXISTS, SF CONJ_ss, pure_vars]
>- (
first_x_assum drule >> strip_tac >> pop_assum drule >> reverse $ rw[]
>- (disj2_tac >> rpt $ goal_assum drule) >>
disj1_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FOLDR_maunion, FLOOKUP_DEF,
PULL_EXISTS, GSYM CONJ_ASSOC] >>
rpt $ goal_assum $ drule_at Any >> simp[EL_MEM]
)
>- (
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> rpt $ goal_assum drule) >>
rpt disj1_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, PULL_EXISTS] >>
Cases_on `FLOOKUP as k` >> gvs[]
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`x ∪ s`,`k`] >> simp[])
)
>- (disj2_tac >> rpt disj1_tac >> irule_at Any EQ_REFL >> simp[])
>- (
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> rpt $ goal_assum drule) >>
rpt disj1_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, PULL_EXISTS] >>
Cases_on `FLOOKUP as k` >> gvs[]
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`x ∪ s`,`k`] >> simp[])
)
>- (disj2_tac >> disj1_tac >> disj2_tac >> irule_at Any EQ_REFL >> simp[])
>- (
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (disj2_tac >> rpt disj1_tac >> rpt $ goal_assum drule) >>
Cases_on `s ∈ FRANGE (FDIFF as (set xs))`
>- (rpt disj1_tac >> goal_assum drule >> simp[]) >>
rpt disj2_tac >> gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF] >>
first_x_assum drule >> rw[MEM_EL] >>
qexists_tac `n` >> simp[get_massumptions_def] >>
goal_assum $ drule_at Any >> simp[]
)
>- (
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> rpt $ goal_assum drule) >>
Cases_on `s ∈ FRANGE (as' \\ x)`
>- (
rpt disj1_tac >> qpat_x_assum `_ ∈ FRANGE as'` kall_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, DOMSUB_FLOOKUP_THM, PULL_EXISTS] >>
Cases_on `FLOOKUP as k` >> gvs[]
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`x' ∪ s`,`k`] >> simp[])
)
>- (
gvs[IN_FRANGE_FLOOKUP, DOMSUB_FLOOKUP_THM] >>
first_x_assum drule >> rw[] >>
disj2_tac >> rpt disj1_tac >> simp[get_massumptions_def] >>
goal_assum $ drule_at Any >> simp[]
)
)
>- (
first_x_assum drule >> strip_tac >> gvs[SF SFY_ss] >>
simp[FDIFF_maunion] >>
Cases_on `s ∈ FRANGE (FDIFF as' (set (MAP FST fns)))`
>- (
rpt disj1_tac >> qpat_x_assum `_ ∈ FRANGE as'` kall_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, FLOOKUP_FDIFF, PULL_EXISTS] >>
Cases_on `FLOOKUP as k` >> gvs[] >>
Cases_on `FLOOKUP (FOLDR maunion FEMPTY ass) k` >> gvs[]
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`s ∪ x`,`k`] >> simp[])
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`s ∪ x'`,`k`] >> simp[])
)
>- (
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF] >> first_x_assum drule >> rw[] >>
rpt disj2_tac >> gvs[MEM_EL, EL_MAP] >> goal_assum $ drule_at Any >>
pairarg_tac >> gvs[PULL_EXISTS, pure_vars] >>
simp[get_massumptions_def, FLOOKUP_maunion] >>
qexists_tac `v` >> simp[] >> CASE_TAC >> simp[]
)
)
>- (
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> goal_assum drule >> simp[]) >>
Cases_on `s ∈ FRANGE (FDIFF as (v INSERT set pvars))`
>- (
rpt disj1_tac >> qpat_x_assum `_ ∈ FRANGE as` kall_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_maunion, FLOOKUP_FDIFF, PULL_EXISTS] >>
Cases_on `FLOOKUP as' k` >> gvs[]
>- (qexistsl_tac [`s`,`k`] >> simp[])
>- (qexistsl_tac [`x ∪ s`,`k`] >> simp[])
)
>- (
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF] >> first_x_assum drule >> rw[] >>
simp[get_massumptions_def, GSYM DISJ_ASSOC]
>- (ntac 5 disj2_tac >> disj1_tac >> goal_assum $ drule_at Any >> simp[]) >>
ntac 6 disj2_tac >> disj1_tac >> gvs[MEM_EL] >>
ntac 2 (goal_assum $ drule_at Any >> simp[])
)
)
>- (
first_x_assum $ qspec_then `0` mp_tac >> impl_keep_tac
>- (Cases_on `cases` >> gvs[] >> PairCases_on `ns` >> gvs[namespace_ok_def]) >>
last_x_assum assume_tac >> last_x_assum $ qspec_then `0` mp_tac >> simp[] >>
pairarg_tac >> gvs[] >> ntac 2 strip_tac >>
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> rpt $ goal_assum $ drule_at Any >> simp[]) >>
Cases_on `s ∈ FRANGE (FDIFF (HD ass) (v INSERT set pvars))`
>- (
qpat_x_assum `_ ∈ FRANGE (HD _)` kall_tac >> rpt disj1_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF, FLOOKUP_maunion, FLOOKUP_FOLDR_maunion] >>
simp[PULL_EXISTS] >>
qexists_tac `(case FLOOKUP as k of NONE => {} | SOME s => s) ∪
BIGUNION ({ s | ∃m. MEM m final_as ∧ FLOOKUP m k = SOME s})` >>
simp[PULL_EXISTS] >> irule_at Any OR_INTRO_THM2 >> simp[PULL_EXISTS] >>
qexists_tac `k` >> simp[GSYM CONJ_ASSOC] >>
goal_assum drule >> qexists_tac `FDIFF (HD ass) (v INSERT set pvars)` >>
simp[FLOOKUP_FDIFF] >> conj_asm1_tac >- (Cases_on `final_as` >> gvs[]) >>
TOP_CASE_TAC >> gvs[]
>- (goal_assum drule >> gvs[FDOM_FDIFF, FLOOKUP_DEF]) >>
IF_CASES_TAC >> gvs[] >> irule FALSITY >>
first_x_assum drule >> gvs[FDOM_FDIFF, FLOOKUP_DEF]
)
>- (
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF, PULL_EXISTS] >>
first_x_assum drule >> rw[] >>
rpt disj2_tac >> simp[Once SWAP_EXISTS_THM] >>
qexists_tac `0` >> simp[]
>- (
rpt $ irule_at Any OR_INTRO_THM1 >> simp[PULL_EXISTS] >>
simp[get_massumptions_def, pure_vars] >> goal_assum drule >> simp[]
)
>- (
irule_at Any OR_INTRO_THM1 >> irule_at Any OR_INTRO_THM2 >>
simp[PULL_EXISTS] >> DEP_REWRITE_TAC[MAP2_MAP] >> reverse conj_asm1_tac
>- (
simp[MEM_MAP, PULL_EXISTS, MEM_ZIP, pure_vars] >> gvs[MEM_EL] >>
qexists_tac `n` >> simp[get_massumptions_def] >>
goal_assum drule >> simp[]
) >>
simp[] >> PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
qsuff_tac `MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) ns0)`
>- (
rw[] >> gvs[MEM_MAP, EXISTS_PROD] >>
rev_drule ALOOKUP_ALL_DISTINCT_MEM >> disch_then drule >> simp[]
) >>
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
simp[Once MEM_EL, PULL_EXISTS] >>
disch_then drule >> simp[DISJ_IMP_THM] >> strip_tac >> gvs[] >>
first_x_assum $ qspec_then `"Subscript"` mp_tac >>
simp[pure_configTheory.reserved_cns_def] >>
imp_res_tac ALOOKUP_MEM >> simp[MEM_MAP, EXISTS_PROD] >> goal_assum drule
)
)
)
>- (
first_x_assum $ qspec_then `0` mp_tac >> impl_keep_tac
>- (
PairCases_on `ns` >> gvs[namespace_ok_def] >>
gvs[EVERY_EL, oEL_THM] >> last_x_assum drule >> simp[] >> strip_tac >>
imp_res_tac sortingTheory.PERM_LENGTH >> gvs[] >> Cases_on `cdefs` >> gvs[]
) >>
last_x_assum assume_tac >> last_x_assum $ qspec_then `0` mp_tac >> simp[] >>
pairarg_tac >> gvs[] >> ntac 2 strip_tac >>
first_x_assum drule >> reverse strip_tac >> gvs[]
>- (rpt disj2_tac >> rpt $ goal_assum $ drule_at Any >> simp[]) >>
Cases_on `s ∈ FRANGE (FDIFF (HD ass) (v INSERT set pvars))`
>- (
qpat_x_assum `_ ∈ FRANGE (HD _)` kall_tac >> rpt disj1_tac >>
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF, FLOOKUP_maunion, FLOOKUP_FOLDR_maunion] >>
simp[PULL_EXISTS] >>
qexists_tac `(case FLOOKUP as k of NONE => {} | SOME s => s) ∪
BIGUNION ({ s | ∃m. MEM m final_as ∧ FLOOKUP m k = SOME s})` >>
simp[PULL_EXISTS] >> irule_at Any OR_INTRO_THM2 >> simp[PULL_EXISTS] >>
qexists_tac `k` >> simp[GSYM CONJ_ASSOC] >>
goal_assum drule >> qexists_tac `FDIFF (HD ass) (v INSERT set pvars)` >>
simp[FLOOKUP_FDIFF] >> conj_asm1_tac >- (Cases_on `final_as` >> gvs[]) >>
TOP_CASE_TAC >> gvs[]
>- (goal_assum drule >> gvs[FDOM_FDIFF, FLOOKUP_DEF]) >>
IF_CASES_TAC >> gvs[] >> irule FALSITY >>
first_x_assum drule >> gvs[FDOM_FDIFF, FLOOKUP_DEF]
)
>- (
gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF, PULL_EXISTS] >>
first_x_assum drule >> rw[] >>
rpt disj2_tac >> simp[Once SWAP_EXISTS_THM] >>
qexists_tac `0` >> simp[]
>- (
rpt $ irule_at Any OR_INTRO_THM1 >> simp[PULL_EXISTS] >>
simp[get_massumptions_def, pure_vars] >> goal_assum drule >> simp[]
)
>- (
irule_at Any OR_INTRO_THM1 >> irule_at Any OR_INTRO_THM2 >>
simp[PULL_EXISTS] >> DEP_REWRITE_TAC[MAP2_MAP] >> reverse conj_asm1_tac
>- (
simp[MEM_MAP, PULL_EXISTS, MEM_ZIP, pure_vars] >> gvs[MEM_EL] >>
qexists_tac `n` >> simp[get_massumptions_def] >>
goal_assum drule >> simp[]
) >>
simp[] >> PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND] >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >> goal_assum drule >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
)
)
>- (
qsuff_tac `∃n. n < LENGTH final_cs` >> simp[] >>
qexists_tac `0` >> Cases_on `final_cs` >> gvs[]
)
QED
Theorem minfer_pure_vars:
∀ns mset cexp as cs it v.
minfer ns mset cexp as cs it ∧
namespace_ok ns
⇒ pure_vars it ⊆ new_vars as cs Exception
Proof
rw[SUBSET_DEF] >> imp_res_tac minfer_pure_vars
QED
Theorem minfer_constraints_ok:
∀ns mset cexp as cs it.
minfer ns mset cexp as cs it ∧
namespace_ok ns ∧
FINITE mset
⇒ constraints_ok (SND ns) cs
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[constraints_ok_def, itype_ok, itype_ok_iFunctions] >>
gvs[LIST_REL_EL_EQN, EL_ZIP, MEM_EL, MAP2_MAP, EL_MAP,
PULL_EXISTS, SF CONJ_ss, pure_vars] >>
rpt gen_tac >> imp_res_tac minfer_itype_ok
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[] >> res_tac >> simp[] >>
simp[itype_ok_type_ok] >>
PairCases_on `ns` >> gvs[namespace_ok_def, EVERY_MEM, FORALL_PROD] >>
imp_res_tac ALOOKUP_MEM >> first_x_assum drule >> disch_then irule >> simp[EL_MEM]
)
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[] >> res_tac >> simp[] >>
irule itype_ok_isubst >> simp[EVERY_MAP, itype_ok] >>
simp[itype_ok_type_ok] >>
PairCases_on `ns` >> gvs[namespace_ok_def, EVERY_EL, FORALL_PROD] >>
imp_res_tac ALOOKUP_MEM >> gvs[MEM_EL] >> pop_assum $ assume_tac o GSYM >>
qpat_x_assum `∀n. n < _ ns1 ⇒ _` drule >> simp[] >> disch_then drule >> simp[]
)
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[] >>
imp_res_tac infer_atom_op_LENGTH >> gvs[MAP2_MAP, EL_MAP, EL_ZIP, itype_ok] >>
res_tac >> simp[] >> res_tac >> simp[]
)
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (
strip_tac >> gvs[itype_ok, itype_ok_iFunctions] >> res_tac >> simp[] >>
rw[EVERY_EL] >> last_x_assum drule >> strip_tac >> imp_res_tac minfer_itype_ok
)
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[] >>
rpt (pairarg_tac >> gvs[])
>- (last_x_assum drule >> rw[] >> imp_res_tac minfer_itype_ok)
>- (last_x_assum drule >> simp[] >> strip_tac >> res_tac >> simp[])
>- (simp[itype_ok] >> last_x_assum drule >> rw[] >> imp_res_tac minfer_itype_ok)
>- (simp[itype_ok] >> last_x_assum drule >> rw[] >> imp_res_tac minfer_itype_ok)
)
>- (strip_tac >> gvs[itype_ok] >> res_tac >> simp[])
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[] >>
gvs[EVERY_MAP, itype_ok]
)
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[]
>- (
imp_res_tac sortingTheory.PERM_LENGTH >> gvs[] >>
Cases_on `tys` >> gvs[] >> qpat_x_assum `∀n. _` kall_tac >>
first_assum $ qspec_then `0` mp_tac >>
first_x_assum $ qspec_then `SUC n` mp_tac >> gvs[] >>
rpt $ (pairarg_tac >> gvs[]) >> ntac 2 strip_tac >>
imp_res_tac minfer_itype_ok >> simp[]
) >>
rpt $ (pairarg_tac >> gvs[]) >>
first_x_assum drule >> simp[] >> strip_tac >>
first_x_assum drule >> simp[] >> strip_tac >> reverse $ gvs[itype_ok]
>- (res_tac >> simp[]) >>
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> reverse conj_asm1_tac >> gvs[] >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND]
>- (
simp[MEM_MAP, MEM_ZIP, EL_MAP, EXISTS_PROD, PULL_EXISTS] >>
gen_tac >> strip_tac >> gvs[itype_ok, EL_MAP] >>
simp[itype_ok_type_ok] >> imp_res_tac ALOOKUP_MEM >> gvs[MEM_EL, EVERY_EL] >>
pop_assum $ assume_tac o GSYM >> first_x_assum drule >> simp[]
) >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) ns0)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
simp[Once MEM_EL, PULL_EXISTS] >> disch_then drule >> simp[]) >>
rw[] >> gvs[MEM_MAP, EXISTS_PROD] >>
rev_drule ALOOKUP_ALL_DISTINCT_MEM >> disch_then drule >> simp[]
)
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[]
>- gvs[EVERY_MAP, itype_ok]
>- (
imp_res_tac sortingTheory.PERM_LENGTH >> gvs[] >>
Cases_on `tys` >> gvs[] >> qpat_x_assum `∀n. _` kall_tac >>
first_assum $ qspec_then `0` mp_tac >>
first_x_assum $ qspec_then `SUC n` mp_tac >> gvs[] >>
rpt $ (pairarg_tac >> gvs[]) >> ntac 2 strip_tac >>
imp_res_tac minfer_itype_ok >> simp[]
) >>
rpt $ (pairarg_tac >> gvs[]) >>
first_x_assum drule >> simp[] >> strip_tac >>
first_x_assum drule >> simp[] >> strip_tac >> reverse $ gvs[itype_ok]
>- (res_tac >> simp[]) >>
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> reverse conj_asm1_tac >> gvs[] >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND]
>- (
simp[MEM_MAP, MEM_ZIP, EL_MAP, EXISTS_PROD, PULL_EXISTS] >>
gen_tac >> strip_tac >> gvs[itype_ok, EL_MAP] >>
irule itype_ok_isubst >> simp[EVERY_MAP, itype_ok] >>
simp[itype_ok_type_ok] >> imp_res_tac ALOOKUP_MEM >> gvs[MEM_EL, EVERY_EL] >>
pop_assum $ assume_tac o GSYM >> gvs[oEL_THM] >>
qpat_x_assum `∀n. n < _ ns1 ⇒ _` drule >> simp[] >> disch_then drule >> simp[]
) >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >> goal_assum drule >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
>- (
strip_tac >> gvs[itype_ok] >> res_tac >> simp[]
>- gvs[EVERY_MAP, itype_ok]
>- (
last_x_assum drule >> pairarg_tac >> gvs[] >> strip_tac >>
imp_res_tac minfer_itype_ok
) >>
rpt $ (pairarg_tac >> gvs[]) >>
first_x_assum drule >> simp[] >> strip_tac >>
first_x_assum drule >> simp[] >> strip_tac >> reverse $ gvs[itype_ok]
>- (res_tac >> simp[]) >>
qpat_x_assum `MEM _ (MAP2 _ _ _)` mp_tac >>
DEP_REWRITE_TAC[MAP2_MAP] >> reverse conj_asm1_tac >> gvs[] >>
PairCases_on `ns` >> gvs[namespace_ok_def, ALL_DISTINCT_APPEND]
>- (
simp[MEM_MAP, MEM_ZIP, EL_MAP, EXISTS_PROD, PULL_EXISTS] >>
gen_tac >> strip_tac >> gvs[itype_ok, EL_MAP] >>
irule itype_ok_isubst >> simp[EVERY_MAP, itype_ok] >>
simp[itype_ok_type_ok] >> imp_res_tac ALOOKUP_MEM >> gvs[MEM_EL, EVERY_EL] >>
pop_assum $ assume_tac o GSYM >> gvs[oEL_THM] >>
qpat_x_assum `∀n. n < _ ns1 ⇒ _` drule >> simp[] >> disch_then drule >> simp[]
) >>
`MEM (cname, LENGTH pvars) (MAP (λ(cn,ts). (cn, LENGTH ts)) cdefs)` by (
drule $ iffRL sortingTheory.PERM_MEM_EQ >>
simp[MEM_MAP, EXISTS_PROD, PULL_EXISTS, FORALL_PROD] >>
disch_then irule >> simp[MEM_EL] >>
disj1_tac >> simp[PULL_EXISTS] >> goal_assum $ drule_at Any >> simp[]) >>
gvs[MEM_MAP, EXISTS_PROD] >>
drule_at (Pos last) ALOOKUP_ALL_DISTINCT_MEM >> impl_tac >> simp[] >>
gvs[MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
irule ALL_DISTINCT_FLAT_IMP >> goal_assum drule >>
simp[MEM_MAP, EXISTS_PROD] >> irule_at Any EQ_REFL >> simp[MEM_EL] >>
gvs[oEL_THM] >> goal_assum drule >> simp[]
)
QED
(******************** Simple lemmas ********************)
Theorem CARD_has_fmap_linv:
∀f. (∃g. fmap_linv f g) ⇔ CARD (FDOM f) = CARD (FRANGE f)
Proof
rw[miscTheory.has_fmap_linv_inj, CARD_fmap_injection] >>
simp[INJ_DEF, FLOOKUP_DEF, FRANGE_DEF] >> eq_tac >> rw[] >>
goal_assum drule >> gvs[]
QED
Theorem fmap_linv_sym:
∀f g. fmap_linv f g ⇔ fmap_linv g f
Proof
rw[miscTheory.fmap_linv_def] >> eq_tac >> rw[] >>
gvs[FLOOKUP_DEF, FRANGE_DEF, EXTENSION] >> metis_tac[]
QED
Theorem fmap_linv_alt_def:
fmap_linv f g ⇔
FDOM f = FRANGE g ∧
FDOM g = FRANGE f ∧
(∀x. x ∈ FDOM f ⇒ g ' (f ' x) = x) ∧
(∀x. x ∈ FDOM g ⇒ f ' (g ' x) = x)
Proof
eq_tac >> strip_tac
>- (imp_res_tac fmap_linv_sym >> gvs[miscTheory.fmap_linv_def, FLOOKUP_DEF])
>- (
rw[miscTheory.fmap_linv_def, FLOOKUP_DEF] >>
last_x_assum $ assume_tac o GSYM >> gvs[] >>
simp[FRANGE_DEF] >> goal_assum drule >> simp[]
)
QED
Theorem pure_apply_subst_split_isubst:
∀fm (sub : num |-> itype) it.
CARD (FDOM fm) = CARD (FRANGE fm) ∧
count (CARD (FDOM fm)) = FRANGE fm ∧
FDOM sub ⊆ FDOM fm ∧
freedbvars it = {}
⇒ ∃gm.
fmap_linv fm gm ∧
isubst
(GENLIST (λn. csubst sub (CVar $ gm ' n))
(CARD (FDOM fm)))
(csubst (DBVar o_f fm) it) = csubst sub it
Proof
rw[pure_apply_subst, FLOOKUP_DEF] >> drule $ iffRL CARD_has_fmap_linv >> rw[] >>
goal_assum drule >> qpat_x_assum `_ = {}` mp_tac >>
qid_spec_tac `it` >> recInduct itype_ind >>
rw[pure_apply_subst, isubst_def] >> gvs[freedbvars_def] >>
gvs[LIST_TO_SET_EQ_SING, EVERY_MAP, EVERY_MEM] >>
simp[MAP_MAP_o, combinTheory.o_DEF, MAP_EQ_f, FLOOKUP_o_f] >>
gvs[miscTheory.fmap_linv_def, FLOOKUP_DEF] >>
Cases_on `n ∈ FDOM sub` >> Cases_on `n ∈ FDOM fm` >> gvs[SUBSET_DEF, isubst_def] >>
qsuff_tac `fm ' n < CARD (FRANGE fm)` >> rw[] >>
gvs[FRANGE_DEF, EXTENSION]
QED
Theorem pure_walkstar_pure_apply_subst_pure_walkstar[local]:
∀s. pure_wfs s ⇒
∀it sub. (∀v. v ∈ FRANGE sub ⇒ pure_vars v = {}) ⇒
pure_walkstar s (pure_apply_subst sub (pure_walkstar s it)) =
pure_apply_subst sub (pure_walkstar s it)
Proof
gen_tac >> strip_tac >>
qspec_then `s` mp_tac pure_walkstar_alt_ind >> simp[] >>
disch_then ho_match_mp_tac >> rw[pure_walkstar_alt, pure_apply_subst]
>- simp[MAP_MAP_o, combinTheory.o_DEF, MAP_EQ_f]
>- simp[MAP_MAP_o, combinTheory.o_DEF, MAP_EQ_f] >>
CASE_TAC >> gvs[] >>
simp[pure_apply_subst] >> CASE_TAC >> gvs[pure_walkstar_alt] >>
irule pure_walkstar_unchanged >> simp[] >>
gvs[IN_FRANGE_FLOOKUP, PULL_EXISTS] >>
first_x_assum drule >> simp[]
QED
Triviality new_vars_SUBSET:
BIGUNION (FRANGE as) ⊆ BIGUNION (FRANGE as') ∧ cs ⊆ cs' ∧
pure_vars it ⊆ pure_vars it' ∧
v ∈ new_vars as cs it ⇒
v ∈ new_vars as' cs' it'
Proof
rw[new_vars_def] >> gvs[SUBSET_DEF] >> metis_tac[]
QED
Triviality new_vars_SUBSET_minfer:
BIGUNION (FRANGE as) ⊆ BIGUNION (FRANGE as') ∧ cs ⊆ cs' ∧
pure_vars it ⊆ new_vars as cs Exception ⇒
∀n. n ∈ new_vars as cs it ⇒ n ∈ new_vars as' cs' it'
Proof
rw[new_vars_def] >> gvs[SUBSET_DEF, pure_vars] >> metis_tac[]
QED
Triviality pure_vars_csubst_EMPTY_suff:
(∀it. it ∈ FRANGE s ⇒ pure_vars it = {}) ∧
pure_vars t ⊆ FDOM s ⇒
pure_vars (csubst s t) = {}
Proof
rw[] >> once_rewrite_tac[GSYM SUBSET_EMPTY] >> irule SUBSET_TRANS >>
irule_at Any pure_vars_pure_apply_subst_SUBSET >>
simp[IMAGE_EQ_SING, SUBSET_DIFF_EMPTY]
QED
Triviality freedbvars_isubst_EMPTY_suff:
∀it its.
freedbvars it ⊆ count (LENGTH its) ∧
EVERY ( λit. freedbvars it = {}) its
⇒ freedbvars (isubst its it) = {}
Proof
Induct using itype_ind >> rw[isubst_def, freedbvars_def] >>
gvs[LIST_TO_SET_MAP, IMAGE_EQ_SING, PULL_EXISTS, DISJ_EQ_IMP, BIGUNION_SUBSET] >>
gvs[EVERY_EL]
QED
Triviality shift_shift_let_lemma:
∀it t sub vs1 vs2.
type_of (csubst (ishift vs1 o_f sub) it) = SOME t ∧
freedbvars it ⊆ count vs1 ⇒
type_of (csubst ((ishift vs1 ∘ ishift vs2) o_f sub) it) =
SOME (shift_db vs1 vs2 t)
Proof
Induct using itype_ind >> rw[] >>
gvs[pure_apply_subst, freedbvars_def, type_of_def, shift_db_def]
>- (
ntac 2 $ pop_assum mp_tac >> qid_spec_tac `z` >>
Induct_on `ts` >> rw[] >> gvs[]
)
>- (
ntac 2 $ pop_assum mp_tac >> qid_spec_tac `z` >>
Induct_on `ts` >> rw[] >> gvs[]
) >>
gvs[FLOOKUP_o_f] >> CASE_TAC >> gvs[type_of_def] >>
drule_then (assume_tac o GSYM) type_of_SOME >> simp[] >>
simp[ishift_itype_of, type_of_itype_of] >> gvs[type_of_ishift] >>
simp[tshift_tshift] >> simp[GSYM tshift_tshift] >> simp[GSYM shift_db_shift_db]
QED
Triviality subset_union:
a ⊆ c ⇒ a ⊆ b ∪ c
Proof
rw[SUBSET_DEF]
QED
Theorem minfer_constraint_vars_lemma[local]:
∀ns mset cexp as cs it tsub vars tsup.
minfer ns mset cexp as cs it ∧
namespace_ok ns ∧
mImplicit tsub vars tsup ∈ cs
⇒ vars ⊆ mset ∪ new_vars as cs it
Proof
ntac 6 gen_tac >> Induct_on `minfer` >> rw[] >>
gvs[LIST_REL_EL_EQN, EL_ZIP, MEM_EL, MAP2_MAP, EL_MAP] >> res_tac
>- (
gvs[SUBSET_DEF] >> rw[] >> first_x_assum drule >> rw[] >> gvs[] >> disj2_tac >>
irule new_vars_SUBSET >> goal_assum drule >>
irule_at Any BIGUNION_FRANGE_FOLDR_maunion >> simp[EL_MEM] >>
simp[pure_vars, SUBSET_DEF, MEM_MAP, MEM_EL, PULL_EXISTS, SF SFY_ss]
)
>- gvs[new_vars_def, pure_vars]
>- (
gvs[SUBSET_DEF] >> rw[] >> first_x_assum drule >> rw[] >> gvs[] >> disj2_tac >>
irule new_vars_SUBSET_minfer >> goal_assum drule >>
simp[BIGUNION_FRANGE_maunion, pure_vars] >>
imp_res_tac minfer_pure_vars >> gvs[SUBSET_DEF]
)
>- (
gvs[SUBSET_DEF] >> rw[] >> first_x_assum drule >> rw[] >> gvs[] >> disj2_tac >>
irule new_vars_SUBSET_minfer >> goal_assum drule >>