-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathsource_to_source2Script.sml
438 lines (402 loc) · 15.9 KB
/
source_to_source2Script.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
(*
This file defines the PrincessCake optimiser as a source to source pass.
Function ‵stos_pass_with_plans‵ corresponds to ‵applyOpts‵
from the paper.
General correctness theorems are proven in source_to_sourceProofsScript.
The optimiser definitions rely on the low-level functions from
icing_rewriterScript implementing pattern matching and pattern instantiation.
*)
open semanticPrimitivesTheory evaluateTheory
icing_rewriterTheory icing_optimisationsTheory fpOptTheory fpValTreeTheory;
open preamble;
val _ = new_theory "source_to_source2";
(**
Rewriter configuration
optimisations is the list of Icing-optimisations that may be applied by the
rewriter
canOpt is a flag that memorizes whether or not optimisation has passed through
a "Opt" annotation
**)
Datatype:
config = <|
optimisations : (fp_pat # fp_pat) list;
canOpt : bool |>
End
(**
Define an empty configuration
**)
Definition no_fp_opt_conf_def:
no_fp_opt_conf = <| optimisations := []; canOpt := F |>
End
Definition extend_conf_def:
extend_conf (cfg:config) rws =
cfg with optimisations := cfg.optimisations ++ rws
End
Theorem extend_conf_canOpt[simp]:
(extend_conf cfg rws).canOpt = cfg.canOpt
Proof
fs[extend_conf_def]
QED
(* Datatype for opt_path into a tree value. Here is the leaf node meaning that
the rewrite should be applied *)
Datatype:
opt_path = Left opt_path | Right opt_path
| Center opt_path
| ListIndex (num # opt_path)
| Here
End
Datatype:
opt_step = Apply (opt_path # ((fp_pat # fp_pat) list))
| Label string
| Expected ast$exp
End
Type fp_plan = “: opt_step list”
Definition MAP_plan_to_path_def:
MAP_plan_to_path (to_path: opt_path -> opt_path) (plan: fp_plan) =
MAP (λ step. case step of
| Apply (path, rws) => Apply (to_path path, rws)
| x => x) plan
End
Definition left_def:
left path = Left path
End
Definition right_def:
right path = Right path
End
Definition center_def:
center path = Center path
End
Definition listIndex_def:
listIndex i path = ListIndex (i, path)
End
Datatype:
Result = Success
| FailOpt (string # opt_path # (fp_pat # fp_pat) list)
| FailExpect (string # ast$exp)
End
(** Disallow further optimisations **)
Definition no_optimisations_def:
no_optimisations cfg (Lit l) = Lit l /\
no_optimisations cfg (Var x) = Var x /\
no_optimisations (cfg:config) (Raise e) =
Raise (no_optimisations cfg e) /\
no_optimisations cfg (Handle e pes) =
Handle (no_optimisations cfg e) (MAP (\ (p,e). (p, no_optimisations cfg e)) pes) /\
no_optimisations cfg (Con mod exps) =
Con mod (MAP (no_optimisations cfg) exps) /\
no_optimisations cfg (Fun s e) = Fun s e ∧
no_optimisations cfg (App op exps) = App op (MAP (no_optimisations cfg) exps) /\
no_optimisations cfg (Log lop e2 e3) =
Log lop (no_optimisations cfg e2) (no_optimisations cfg e3) /\
no_optimisations cfg (If e1 e2 e3) =
If (no_optimisations cfg e1) (no_optimisations cfg e2) (no_optimisations cfg e3) /\
no_optimisations cfg (Mat e pes) =
Mat (no_optimisations cfg e) (MAP (\ (p,e). (p, no_optimisations cfg e)) pes) /\
no_optimisations cfg (Let so e1 e2) =
Let so (no_optimisations cfg e1) (no_optimisations cfg e2) /\
no_optimisations cfg (Letrec ses e) =
Letrec ses (no_optimisations cfg e) /\
no_optimisations cfg (Tannot e t) =
Tannot (no_optimisations cfg e) t /\
no_optimisations cfg (Lannot e l) =
Lannot (no_optimisations cfg e) l /\
no_optimisations cfg (FpOptimise sc e) = FpOptimise NoOpt (no_optimisations cfg e)
Termination
WF_REL_TAC `measure (\ (c,e). exp_size e)`
End
Definition no_optimise_pass_def:
no_optimise_pass cfg [] = [] ∧
no_optimise_pass cfg (e1::e2::es) =
(no_optimise_pass cfg [e1]) ++ (no_optimise_pass cfg (e2::es)) ∧
no_optimise_pass cfg [Fun s e] =
[Fun s (HD (no_optimise_pass cfg [e]))] ∧
no_optimise_pass cfg [e] = [no_optimisations cfg e]
End
Definition no_opt_decs_def:
no_opt_decs cfg [] = [] ∧
no_opt_decs cfg (e1::e2::es) =
(no_opt_decs cfg [e1] ++ no_opt_decs cfg (e2::es)) ∧
no_opt_decs cfg [Dlet loc p e] =
[Dlet loc p (HD (no_optimise_pass cfg [e]))] ∧
no_opt_decs cfg [Dletrec ls exps] =
[Dletrec ls (MAP (λ (fname, param, e). (fname, param, HD (no_optimise_pass cfg [e]))) exps)] ∧
no_opt_decs cfg [d] = [d]
End
(** Optimisation pass starts below **)
Definition perform_rewrites_def:
perform_rewrites (cfg: config) Here rewrites (Lit l) = Lit l ∧
(* (if (cfg.canOpt) then (rewriteFPexp rewrites (Lit l)) else (Lit l)) ∧ *)
perform_rewrites (cfg: config) Here rewrites (App op exps) =
(if (cfg.canOpt) then (rewriteFPexp rewrites (App op exps)) else (App op exps)) ∧
perform_rewrites (cfg: config) Here rewrites (Var x) = Var x ∧
(* (if (cfg.canOpt) then (rewriteFPexp rewrites (Var x)) else (Var x)) ∧ *)
(* Make sure not to optimise away anything else (WAS: the FpOptimise or Let) *)
perform_rewrites (cfg: config) Here rewrites e = e ∧
(* If we are not at the end of the path, further navigate through the AST *)
perform_rewrites cfg (Left _) rewrites (Lit l) = Lit l ∧
perform_rewrites cfg (Left _) rewrites (Var x) = Var x ∧
perform_rewrites cfg (Center path) rewrites (Raise e) =
Raise (perform_rewrites cfg path rewrites e) ∧
(* We cannot support "Handle" expressions because we must be able to reorder exceptions *)
perform_rewrites cfg path rewrites (Handle e pes) = Handle e pes ∧
perform_rewrites cfg (ListIndex (i, path)) rewrites (Con mod exps) =
Con mod (MAPi (λ n e. (if (n = i) then (perform_rewrites cfg path rewrites e) else e)) exps) ∧
(* TODO: Why is this not optimized? *)
perform_rewrites cfg (Left _) rewrites (Fun s e) = Fun s e ∧
perform_rewrites cfg (ListIndex (i, path)) rewrites (App op exps) =
App op (MAPi (λ n e. (if (n = i) then (perform_rewrites cfg path rewrites e) else e)) exps) ∧
perform_rewrites cfg (Left path) rewrites (Log lop e2 e3) =
Log lop (perform_rewrites cfg path rewrites e2) e3 ∧
perform_rewrites cfg (Right path) rewrites (Log lop e2 e3) =
Log lop e2 (perform_rewrites cfg path rewrites e3) ∧
perform_rewrites cfg (Left path) rewrites (If e1 e2 e3) =
If (perform_rewrites cfg path rewrites e1) e2 e3 ∧
perform_rewrites cfg (Center path) rewrites (If e1 e2 e3) =
If e1 (perform_rewrites cfg path rewrites e2) e3 ∧
perform_rewrites cfg (Right path) rewrites (If e1 e2 e3) =
If e1 e2 (perform_rewrites cfg path rewrites e3) ∧
perform_rewrites cfg (Left path) rewrites (Mat e pes) = Mat (perform_rewrites cfg path rewrites e) pes ∧
perform_rewrites cfg (ListIndex (i, path)) rewrites (Mat e pes) =
Mat e (MAPi (λ n (p, e'). (if (n = i) then (p, (perform_rewrites cfg path rewrites e')) else (p, e'))) pes) ∧
perform_rewrites cfg (Left path) rewrites (Let so e1 e2) =
Let so (perform_rewrites cfg path rewrites e1) e2 ∧
perform_rewrites cfg (Right path) rewrites (Let so e1 e2) =
Let so e1 (perform_rewrites cfg path rewrites e2) ∧
perform_rewrites cfg (Center path) rewrites (Letrec ses e) =
Letrec ses (perform_rewrites cfg path rewrites e) ∧
perform_rewrites cfg (Center path) rewrites (Tannot e t) =
Tannot (perform_rewrites cfg path rewrites e) t ∧
perform_rewrites cfg (Center path) rewrites (Lannot e l) =
Lannot (perform_rewrites cfg path rewrites e) l ∧
perform_rewrites cfg (Center path) rewrites (FpOptimise sc e) =
FpOptimise sc (perform_rewrites (cfg with canOpt := if sc = Opt then T else F) path rewrites e) ∧
perform_rewrites cfg _ _ e = e
End
Definition optimise_with_plan_def:
optimise_with_plan cfg [] e = (e, Success) ∧
optimise_with_plan cfg (Label s :: plan) e = optimise_with_plan cfg plan e ∧
optimise_with_plan cfg (Expected e_opt :: plan) e =
(if e_opt = e
then optimise_with_plan cfg plan e
else (e, FailExpect ("Not correct expression" , e_opt))) ∧
optimise_with_plan cfg (Apply (path, rewrites)::rest) e =
let e_opt = perform_rewrites cfg path rewrites e in
if e = e_opt then (e, FailOpt ("Single app", path, rewrites))
else if (rest = [])
then (e_opt, Success)
else
let (e_optFull, res) = optimise_with_plan cfg rest e_opt in
if (e_optFull = e_opt ∧ res ≠ Success) then (e, res)
else (e_optFull, res)
End
Definition stos_pass_with_plans_def:
stos_pass_with_plans cfg plans [] = [] ∧
stos_pass_with_plans cfg [] exps = MAP (λ e. (e, Success)) exps ∧
stos_pass_with_plans cfg (plan1::plan2::rest) (e1::es) =
(stos_pass_with_plans cfg [plan1] [e1]) ++
(stos_pass_with_plans cfg (plan2::rest) es) ∧
stos_pass_with_plans cfg (plan1::plans) (e1::e2::es) =
(stos_pass_with_plans cfg [plan1] [e1]) ++
(stos_pass_with_plans cfg plans (e2::es)) ∧
stos_pass_with_plans cfg plans [Fun s e] =
(let (e_opt, res) = HD (stos_pass_with_plans cfg plans [e]) in
[(Fun s e_opt, res)]) ∧
stos_pass_with_plans cfg [plan] [e] = [optimise_with_plan cfg plan e] ∧
stos_pass_with_plans _ _ exps = MAP (\e. (e, Success)) exps
End
Definition stos_pass_with_plans_decs_def:
stos_pass_with_plans_decs cfg plans [] = [] ∧
stos_pass_with_plans_decs cfg (plans1::plans2::rest) (d1::ds) =
(stos_pass_with_plans_decs cfg [plans1] [d1] ++ stos_pass_with_plans_decs cfg (plans2::rest) (ds)) ∧
stos_pass_with_plans_decs cfg [plans1] [Dlet loc p e] =
(let (e_opt, res) = HD (stos_pass_with_plans cfg [plans1] [e]) in
[(Dlet loc p e_opt, res)] )∧
stos_pass_with_plans_decs cfg plans [d] = [(d, Success)]
End
val _ = export_theory();
(** UNUSED **)
(*
Definition linear_interpolation_def:
linear_interpolation = FpOptimise Opt
(App (FP_bop FP_Add)
[
(App (FP_bop FP_Mul)
[
Var (Short "y");
(App (FP_bop FP_Sub)
[
(App FpFromWord [Lit (Word64 (4607182418800017408w: word64))]);
Var (Short "z")
])
]);
(App (FP_bop FP_Mul)
[
Var (Short "x");
Var (Short "z")
])
])
End
Theorem test__canonicalize = EVAL (
Parse.Term ‘
canonicalize no_fp_opt_conf (
(FpOptimise Opt
(App (FP_bop FP_Add) [
App (FP_bop FP_Add) [
App (FP_bop FP_Add) [
App (FP_bop FP_Add) [
Var (Short "c");
Var (Short "d")
];
Var (Short "b")
];
App (FP_bop FP_Mul) [
Var (Short "x");
Var (Short "y")
]
];
Var (Short "a")
])
)
)
’);
Theorem test__top_level_multiplicants = EVAL (
Parse.Term ‘
top_level_multiplicants (App (FP_bop FP_Mul) [
App (FP_bop FP_Add) [Var (Short "x"); Lit (Word64 0w)];
(App (FP_bop FP_Mul) [
Var (Short "y");
App (FP_bop FP_Mul) [
(Var (Short "a"));
(Lit (Word64 7w))
]
]
)
])
’)
Theorem test__move_multiplicants_to_right = EVAL (
Parse.Term ‘
move_multiplicants_to_right (no_fp_opt_conf with canOpt := T) [(Var (Short "d")); (Var (Short "b"))] (
(App (FP_bop FP_Mul) [
Var (Short "a");
App (FP_bop FP_Mul) [
Var (Short "b");
App (FP_bop FP_Mul) [
Var (Short "c");
App (FP_bop FP_Mul) [
Var (Short "d");
Var (Short "e")
]
]
]
])
)
’);
Theorem test__move_multiplicants_to_right2 = EVAL (
Parse.Term ‘
move_multiplicants_to_right (no_fp_opt_conf with canOpt := T) [(Var (Short "x3")); (Var (Short "x3")); (Var (Short "x3"))] (
(
App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul) [Var (Short "x3"); Var (Short "x3")]]
)
)
’);
Theorem test__canonicalize_for_distributivity = EVAL (
Parse.Term ‘
canonicalize_for_distributivity no_fp_opt_conf (
(FpOptimise Opt
(App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")];
App (FP_bop FP_Add)
[Var (Short "x3");
App FpFromWord
[Lit (Word64 0x4010000000000000w)]]]]])
)
)
’);
Theorem test__canonicalize_for_distributivity2 = EVAL (
Parse.Term ‘
let e = (FpOptimise Opt
(App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")];
App (FP_bop FP_Add)
[Var (Short "x3");
App FpFromWord
[Lit (Word64 0x4010000000000000w)]]]]])
) in
let (_, plan) = canonicalize_for_distributivity no_fp_opt_conf e in
optimise_with_plan no_fp_opt_conf plan e
’);
Theorem test__apply_distributivity2 = EVAL (
Parse.Term ‘
let e = (FpOptimise Opt
(App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3");
App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")]];
App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")];
App (FP_bop FP_Add)
[Var (Short "x3");
App FpFromWord
[Lit (Word64 0x4010000000000000w)]]]]])) in
let (_, plan) = apply_distributivity no_fp_opt_conf e in
optimise_with_plan no_fp_opt_conf plan e
’);
Theorem test__apply_distributivity = EVAL (
Parse.Term ‘
apply_distributivity no_fp_opt_conf (
(FpOptimise Opt
(App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[App (FP_bop FP_Add)
[App (FP_bop FP_Mul)
[Var (Short "x3"); Var (Short "x3")];
App (FP_bop FP_Add)
[Var (Short "x3");
App FpFromWord [Lit (Word64 0x3FF0000000000000w)]]];
Var (Short "x3")];
App FpFromWord [Lit (Word64 0x3FF0000000000000w)]];
Var (Short "x3")];
App FpFromWord [Lit (Word64 0x4010000000000000w)]])
)
)
’);
*)