-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclust.R
123 lines (110 loc) · 3.41 KB
/
clust.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
################################################################################
#
# Copyright (C) Patrick Cahan 2007-2009
#
# Contact: [email protected]
#
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with this library; if not, write to the Free
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
#################################################################################
# adds a rank (ascending) column to ng based on clustering
addClustRank<-function(ng,num_clusts,diver=FALSE){
ranks<-vector(length=nrow(ng));
if(diver){
similar<-ng[ng$state==1 | ng$state==2,];
divergent<-ng[ng$state==0,];
if( (nrow(similar) == nrow(ng)) ||
(nrow(divergent) == nrow(ng)) ||
(nrow(similar)<num_clusts) ||
(nrow(divergent)<num_clusts) ){
diver<-FALSE;
ranks<-clustPosNeg(ng,num_clusts);
}
else{
cl_s<-clustPosNeg(similar,num_clusts);
cl_d<-clustPosNeg(divergent,num_clusts);
ranks[as.integer(rownames(similar))]<-cl_s;
ranks[as.integer(rownames(divergent))]<-cl_d;
}
}
else{
ranks<-clustPosNeg(ng,num_clusts);
}
ng<-cbind(ng,ranks);
#write.table(ng, file=fname, sep="\t", col.names=FALSE, row.names=FALSE,quote=FALSE);
}
# returns ranks of values in tab (ng)
clustPosNeg<-function(tab,nclusts){
centers<-vector(length=nclusts, mode="integer");
ranks<-vector(length=nrow(tab),mode="integer");
#divide by mean value
mn<-mean(tab$nimblegen_signal);
neg<-tab[tab$nimblegen_signal<mn,];
indexn<-which(tab$nimblegen_signal<mn);
pos<-tab[tab$nimblegen_signal>=mn,];
indexp<-which(tab$nimblegen_signal>=mn);
#cluster negs
cln<-clara(neg$nimblegen_signal,nclusts%/%2 + 1);
# set centers
centers[1:(nclusts%/%2+1)]<-cln$medoids;
#set cluster
ranks[indexn]<-translateRank(clus=cln, nclusts=nclusts, dir=-1);
# cluster pos
clp<-clara(pos$nimblegen_signal,nclusts%/%2 + 1);
#set cluster
ranks[indexp]<-translateRank(clus=clp, nclusts=nclusts, dir=1);
ranks;
}
# translates cluster labels to ranks
translateRank<-function(clus, nclusts, dir){
center<-(nclusts%/%2)+1;
ranks<-vector(length=length(clus$clustering), mode="integer");
# get norm index
if(dir<0){
norm_i<-which.max(clus$medoids);
str<-0;
# cat(str,"\n");
}
else{
norm_i<-which.min(clus$medoids);
str<-center;
# cat(str,"\n");
}
ranks[which(clus$clustering==norm_i)]<-center;
meds<-rem(clus$medoids, clus$medoids[norm_i]);
medsS<-sort(meds);
l<-1;
for(med in clus$medoids){
if(l!=norm_i){
rnk<-which(medsS==med) + str;
# cat(med,"\t");
# cat(rnk,"\n");
ranks[which(clus$clustering==l)]<-rnk
}
l<-l+1;
}
ranks;
}
# removes val from ar
rem<-function(ar, val){
ans<-vector();
for(i in ar){
if(i!=val){
ans<-append(ans, i);
}
}
ans;
}