forked from assafshocher/InGAN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInGAN.py
312 lines (263 loc) · 15.7 KB
/
InGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
from torch.autograd import Variable
import networks
from util import random_size, get_scale_weights
import os
import warnings
import numpy as np
class LRPolicy(object):
def __init__(self, start, end):
self.start = start
self.end = end
def __call__(self, citer):
return 1. - max(0., float(citer - self.start) / float(self.end - self.start))
# noinspection PyAttributeOutsideInit
class InGAN:
def __init__(self, conf):
# Acquire configuration
self.conf = conf
self.cur_iter = 0
self.max_iters = conf.max_iters
# Define input tensor
self.input_tensor = torch.FloatTensor(1, 3, conf.input_crop_size, conf.input_crop_size).cuda()
self.real_example = torch.FloatTensor(1, 3, conf.output_crop_size, conf.output_crop_size).cuda()
# Define networks
self.G = networks.Generator(conf.G_base_channels, conf.G_num_resblocks, conf.G_num_downscales, conf.G_use_bias,
conf.G_skip)
self.D = networks.MultiScaleDiscriminator(conf.output_crop_size, self.conf.D_max_num_scales,
self.conf.D_scale_factor, self.conf.D_base_channels)
self.GAN_loss_layer = networks.GANLoss()
self.Reconstruct_loss = networks.WeightedMSELoss(use_L1=conf.use_L1)
self.RandCrop = networks.RandomCrop([conf.input_crop_size, conf.input_crop_size], must_divide=conf.must_divide)
self.SwapCrops = networks.SwapCrops(conf.crop_swap_min_size, conf.crop_swap_max_size)
# Make all networks run on GPU
self.G.cuda()
self.D.cuda()
self.GAN_loss_layer.cuda()
self.Reconstruct_loss.cuda()
self.RandCrop.cuda()
self.SwapCrops.cuda()
# Define loss function
self.criterionGAN = self.GAN_loss_layer.forward
self.criterionReconstruction = self.Reconstruct_loss.forward
# Keeping track of losses- prepare tensors
self.losses_G_gan = torch.FloatTensor(conf.print_freq).cuda()
self.losses_D_real = torch.FloatTensor(conf.print_freq).cuda()
self.losses_D_fake = torch.FloatTensor(conf.print_freq).cuda()
self.losses_G_reconstruct = torch.FloatTensor(conf.print_freq).cuda()
if self.conf.reconstruct_loss_stop_iter > 0:
self.losses_D_reconstruct = torch.FloatTensor(conf.print_freq).cuda()
# Initialize networks
self.G.apply(networks.weights_init)
self.D.apply(networks.weights_init)
# Initialize optimizers
self.optimizer_G = torch.optim.Adam(self.G.parameters(), lr=conf.g_lr, betas=(conf.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.D.parameters(), lr=conf.d_lr, betas=(conf.beta1, 0.999))
# Learning rate scheduler
# First define linearly decaying functions (decay starts at a special iter)
start_decay = conf.lr_start_decay_iter
end_decay = conf.max_iters
# def lr_function(n_iter):
# return 1 - max(0, 1.0 * (n_iter - start_decay) / (conf.max_iters - start_decay))
lr_function = LRPolicy(start_decay, end_decay)
# Define learning rate schedulers
self.lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(self.optimizer_G, lr_function)
self.lr_scheduler_D = torch.optim.lr_scheduler.LambdaLR(self.optimizer_D, lr_function)
# # do we resume from checkpoint?
# if self.conf.resume:
# print('resuming checkpoint {}'.format(self.conf.resume))
# self.resume(self.conf.resume)
def save(self, citer=None):
if citer is None:
filename = 'snapshot.pth.tar'
elif isinstance(citer, str):
filename = citer
else:
filename = 'snapshot-{:05d}.pth.tar'.format(citer)
torch.save({'G': self.G.state_dict(),
'D': self.D.state_dict(),
'optim_G': self.optimizer_G.state_dict(),
'optim_D': self.optimizer_D.state_dict(),
'sched_G': self.lr_scheduler_G.state_dict(),
'sched_D': self.lr_scheduler_D.state_dict(),
'loss': self.GAN_loss_layer.state_dict(),
'iter': citer if citer else self.cur_iter},
os.path.join(self.conf.output_dir_path, filename))
def resume(self, resume_path, test_flag=False):
resume = torch.load(resume_path, map_location={'cuda:5': 'cuda:0'})
missing = []
if 'G' in resume:
self.G.load_state_dict(resume['G'])
else:
missing.append('G')
if 'D' in resume:
self.D.load_state_dict(resume['D'])
else:
missing.append('D')
if not test_flag:
if 'optim_G' in resume:
self.optimizer_G.load_state_dict(resume['optim_G'])
else:
missing.append('optimizer G')
if 'optim_D' in resume:
self.optimizer_D.load_state_dict(resume['optim_D'])
else:
missing.append('optimizer D')
if 'sched_G' in resume:
self.lr_scheduler_G.load_state_dict(resume['sched_G'])
else:
missing.append('lr scheduler G')
if 'sched_D' in resume:
self.lr_scheduler_D.load_state_dict(resume['sched_D'])
else:
missing.append('lr scheduler G')
if 'loss' in resume:
self.GAN_loss_layer.load_state_dict(resume['loss'])
else:
missing.append('GAN loss')
if len(missing):
warnings.warn('Missing the following state dicts from checkpoint: {}'.format(', '.join(missing)))
print('resuming checkpoint {}'.format(self.conf.resume))
def test(self, input_tensor, output_size, rand_affine, input_size, run_d_pred=True, run_reconstruct=True):
with torch.no_grad():
self.G_pred = self.G.forward(Variable(input_tensor.detach()), output_size=output_size, random_affine=rand_affine)
if run_d_pred:
scale_weights_for_output = get_scale_weights(i=self.cur_iter,
max_i=self.conf.D_scale_weights_iter_for_even_scales,
start_factor=self.conf.D_scale_weights_sigma,
input_shape=self.G_pred.shape[2:],
min_size=self.conf.D_min_input_size,
num_scales_limit=self.conf.D_max_num_scales,
scale_factor=self.conf.D_scale_factor)
scale_weights_for_input = get_scale_weights(i=self.cur_iter,
max_i=self.conf.D_scale_weights_iter_for_even_scales,
start_factor=self.conf.D_scale_weights_sigma,
input_shape=input_tensor.shape[2:],
min_size=self.conf.D_min_input_size,
num_scales_limit=self.conf.D_max_num_scales,
scale_factor=self.conf.D_scale_factor)
self.D_preds = [self.D.forward(Variable(input_tensor.detach()), scale_weights_for_input),
self.D.forward(Variable(self.G_pred.detach()), scale_weights_for_output)]
else:
self.D_preds = None
self.G_preds = [input_tensor, self.G_pred]
self.reconstruct = self.G.forward(self.G_pred, output_size=input_size, random_affine=-rand_affine) if run_reconstruct else None
return self.G_preds, self.D_preds, self.reconstruct
def train_g(self):
# Zeroize gradients
self.optimizer_G.zero_grad()
self.optimizer_D.zero_grad()
# Determine output size of G (dynamic change)
output_size, random_affine = random_size(orig_size=self.input_tensor.shape[2:],
curriculum=self.conf.curriculum,
i=self.cur_iter,
iter_for_max_range=self.conf.iter_for_max_range,
must_divide=self.conf.must_divide,
min_scale=self.conf.min_scale,
max_scale=self.conf.max_scale,
max_transform_magniutude=self.conf.max_transform_magnitude)
# Add noise to G input for better generalization (make it ignore the 1/255 binning)
self.input_tensor_noised = self.input_tensor + (torch.rand_like(self.input_tensor) - 0.5) * 2.0 / 255
# Generator forward pass
self.G_pred = self.G.forward(self.input_tensor_noised, output_size=output_size, random_affine=random_affine)
# Run generator result through discriminator forward pass
self.scale_weights = get_scale_weights(i=self.cur_iter,
max_i=self.conf.D_scale_weights_iter_for_even_scales,
start_factor=self.conf.D_scale_weights_sigma,
input_shape=self.G_pred.shape[2:],
min_size=self.conf.D_min_input_size,
num_scales_limit=self.conf.D_max_num_scales,
scale_factor=self.conf.D_scale_factor)
d_pred_fake = self.D.forward(self.G_pred, self.scale_weights)
# If reconstruction-loss is used, run through decoder to reconstruct, then calculate reconstruction loss
if self.conf.reconstruct_loss_stop_iter > self.cur_iter:
self.reconstruct = self.G.forward(self.G_pred, output_size=self.input_tensor.shape[2:], random_affine=-random_affine)
self.loss_G_reconstruct = self.criterionReconstruction(self.reconstruct, self.input_tensor, self.loss_mask)
# Calculate generator loss, based on discriminator prediction on generator result
self.loss_G_GAN = self.criterionGAN(d_pred_fake, is_d_input_real=True)
# Generator final loss
# Weighted average of the two losses (if indicated to use reconstruction loss)
if self.conf.reconstruct_loss_stop_iter < self.cur_iter:
self.loss_G = self.loss_G_GAN
else:
self.loss_G = (self.conf.reconstruct_loss_proportion * self.loss_G_reconstruct + self.loss_G_GAN)
# Calculate gradients
# Note that the gradients are propagated from the loss through discriminator and then through generator
self.loss_G.backward()
# Update weights
# Note that only generator weights are updated (by definition of the G optimizer)
self.optimizer_G.step()
# Extra training for the inverse G. The difference between this and the reconstruction is the .detach() which
# makes the training only for the inverse G and not for regular G.
if self.cur_iter > self.conf.G_extra_inverse_train_start_iter:
for _ in range(self.conf.G_extra_inverse_train):
self.optimizer_G.zero_grad()
self.inverse = self.G.forward(self.G_pred.detach(), output_size=self.input_tensor.shape[2:], random_affine=-random_affine)
self.loss_G_inverse = (self.criterionReconstruction(self.inverse, self.input_tensor, self.loss_mask) *
self.conf.G_extra_inverse_train_ratio)
self.loss_G_inverse.backward()
self.optimizer_G.step()
# Update learning rate scheduler
self.lr_scheduler_G.step()
def train_d(self):
# Zeroize gradients
self.optimizer_D.zero_grad()
# Adding noise to D input to prevent overfitting to 1/255 bins
real_example_with_noise = self.real_example + (torch.rand_like(self.real_example[-1]) - 0.5) * 2.0 / 255.0
# Discriminator forward pass over real example
self.d_pred_real = self.D.forward(real_example_with_noise, self.scale_weights)
# Adding noise to D input to prevent overfitting to 1/255 bins
# Note that generator result is detached so that gradients are not propagating back through generator
g_pred_with_noise = self.G_pred.detach() + (torch.rand_like(self.G_pred) - 0.5) * 2.0 / 255
# Discriminator forward pass over generated example example
self.d_pred_fake = self.D.forward(g_pred_with_noise, self.scale_weights)
# Calculate discriminator loss
self.loss_D_fake = self.criterionGAN(self.d_pred_fake, is_d_input_real=False)
self.loss_D_real = self.criterionGAN(self.d_pred_real, is_d_input_real=True)
self.loss_D = (self.loss_D_real + self.loss_D_fake) * 0.5
# Calculate gradients
# Note that gradients are not propagating back through generator
# noinspection PyUnresolvedReferences
self.loss_D.backward()
# Update weights
# Note that only discriminator weights are updated (by definition of the D optimizer)
self.optimizer_D.step()
# Update learning rate scheduler
self.lr_scheduler_D.step()
def train_one_iter(self, cur_iter, input_tensors):
# Set inputs as random crops
input_crops = []
mask_crops = []
real_example_crops = []
mask_flag = False
for input_tensor in input_tensors:
real_example_crops += self.RandCrop.forward([input_tensor])
if np.random.rand() < self.conf.crop_swap_probability:
swapped_input_tensor, loss_mask = self.SwapCrops.forward(input_tensor)
[input_crop, mask_crop] = self.RandCrop.forward([swapped_input_tensor, loss_mask])
input_crops.append(input_crop)
mask_crops.append(mask_crop)
mask_flag = True
else:
input_crops.append(real_example_crops[-1])
self.input_tensor = torch.cat(input_crops)
self.real_example = torch.cat(real_example_crops)
self.loss_mask = torch.cat(mask_crops) if mask_flag else None
# Update current iteration
self.cur_iter = cur_iter
# Run a single forward-backward pass on the model and update weights
# One global iteration includes several iterations of generator and several of discriminator
# (not necessarily equal)
# noinspection PyRedeclaration
for _ in range(self.conf.G_iters):
self.train_g()
# noinspection PyRedeclaration
for _ in range(self.conf.D_iters):
self.train_d()
# Accumulate stats
# Accumulating as cuda tensors is much more efficient than passing info from GPU to CPU at every iteration
self.losses_G_gan[cur_iter % self.conf.print_freq] = self.loss_G_GAN.item()
self.losses_D_fake[cur_iter % self.conf.print_freq] = self.loss_D_fake.item()
self.losses_D_real[cur_iter % self.conf.print_freq] = self.loss_D_real.item()
if self.conf.reconstruct_loss_stop_iter > self.cur_iter:
self.losses_G_reconstruct[cur_iter % self.conf.print_freq] = self.loss_G_reconstruct.item()